ON QUANTUM SPECIAL KAHLER GEOMETRY

被引:13
|
作者
Bellucci, Stefano [1 ]
Marrani, Alessio [2 ]
Roychowdhury, Raju [3 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] Stanford Univ, Dept Phys, Stanford Inst Theoret Phys, Varian Lab, Stanford, CA 94305 USA
[3] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2010年 / 25卷 / 09期
关键词
Special Kahler geometry; supergravity; black holes; attractor mechanism; NON-BPS ATTRACTORS; NONLINEAR SIGMA-MODEL; STU BLACK-HOLES; CALABI-YAU; MACROSCOPIC ENTROPY; CP CONSERVATION; CRITICAL-POINTS; SUPERGRAVITY; F-THEORY; MANIFOLDS;
D O I
10.1142/S0217751X10049116
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We compute the effective black hole potential V-BH of the most general N = 2, d = 4 (local) special Kahler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of "flat" directions of V-BH at its critical points. Furthermore, we elucidate the role of the sectional curvature at the nonsupersymmetric critical points of V-BH, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the nonsymmetricity of the considered quantum perturbative special Kahler geometry.
引用
收藏
页码:1891 / 1935
页数:45
相关论文
共 50 条
  • [31] Generalized coKahler geometry and an application to generalized Kahler structures
    Gomez, Ralph R.
    Talvacchia, Janet
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 493 - 503
  • [32] The CR geometry of weighted extremal Kahler and Sasaki metrics
    Apostolov, Vestislav
    Calderbank, David M. J.
    MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1047 - 1088
  • [33] The Einstein-Maxwell Equations and Conformally Kahler Geometry
    LeBrun, Claude
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 344 (02) : 621 - 653
  • [34] Nearly para-Kahler geometry on Lie groups
    Nourmohammadifar, Leila
    Peyghan, Esmaeil
    QUAESTIONES MATHEMATICAE, 2022, 45 (11) : 1713 - 1738
  • [35] The Gibbons-Hawking Ansatz in Generalized Kahler Geometry
    Streets, Jeffrey
    Ustinovskiy, Yury
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 391 (02) : 707 - 778
  • [36] Some remarks on the symplectic and Kahler geometry of toric varieties
    Arezzo, Claudio
    Loi, Andrea
    Zuddas, Fabio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (04) : 1287 - 1304
  • [37] Kahler metrics via Lorentzian Geometry in dimension four
    Aazami, Amir Babak
    Maschler, Gideon
    COMPLEX MANIFOLDS, 2020, 7 (01): : 36 - 61
  • [38] Special geometry of Euclidean supersymmetry IV: the local c-map
    Cortes, V.
    Dempster, P.
    Mohaupt, T.
    Vaughan, O.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [39] The Complex Monge-Ampere Equation in Kahler Geometry
    Blocki, Zbigniew
    PLURIPOTENTIAL THEORY, CETRARO, ITALY 2011, 2013, 2075 : 95 - 141
  • [40] Supersymmetric black holes in AdS4 from very special geometry
    Gnecchi, Alessandra
    Halmagyi, Nick
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):