ON QUANTUM SPECIAL KAHLER GEOMETRY

被引:13
|
作者
Bellucci, Stefano [1 ]
Marrani, Alessio [2 ]
Roychowdhury, Raju [3 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] Stanford Univ, Dept Phys, Stanford Inst Theoret Phys, Varian Lab, Stanford, CA 94305 USA
[3] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2010年 / 25卷 / 09期
关键词
Special Kahler geometry; supergravity; black holes; attractor mechanism; NON-BPS ATTRACTORS; NONLINEAR SIGMA-MODEL; STU BLACK-HOLES; CALABI-YAU; MACROSCOPIC ENTROPY; CP CONSERVATION; CRITICAL-POINTS; SUPERGRAVITY; F-THEORY; MANIFOLDS;
D O I
10.1142/S0217751X10049116
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We compute the effective black hole potential V-BH of the most general N = 2, d = 4 (local) special Kahler geometry with quantum perturbative corrections, consistent with axion-shift Peccei-Quinn symmetry and with cubic leading order behavior. We determine the charge configurations supporting axion-free attractors, and explain the differences among various configurations in relations to the presence of "flat" directions of V-BH at its critical points. Furthermore, we elucidate the role of the sectional curvature at the nonsupersymmetric critical points of V-BH, and compute the Riemann tensor (and related quantities), as well as the so-called E-tensor. The latter expresses the nonsymmetricity of the considered quantum perturbative special Kahler geometry.
引用
收藏
页码:1891 / 1935
页数:45
相关论文
共 50 条
  • [21] Black hole entropy, special geometry and strings
    Mohaupt, T
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2001, 49 (1-3): : 3 - 161
  • [22] Stability of algebraic varieties and Kahler geometry
    Donaldson, Simon K.
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 199 - 221
  • [23] Non-Kahler Calabi-Yau geometry and pluriclosed flow
    Garcia-Fernandez, Mario
    Jordan, Joshua
    Streets, Jeffrey
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 329 - 367
  • [24] On quantum corrected Kahler potentials in F-theory
    Garcia-Etxebarria, Inaki
    Hayashi, Hirotaka
    Savelli, Raffaele
    Shiu, Gary
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (03):
  • [25] THE GEOMETRY OF DOMAINS WITH NEGATIVELY PINCHED KAHLER METRICS
    Bracci, Filippo
    Gaussier, Herve
    Zimmer, Andrew
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 126 (03) : 909 - 938
  • [26] On a class of fully nonlinear flows in Kahler geometry
    Fang, Hao
    Lai, Mijia
    Ma, Xinan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 653 : 189 - 220
  • [27] Hyper-Kahler fourfolds and Grassmann geometry
    Debarre, Olivier
    Voisin, Claire
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 : 63 - 87
  • [28] Topics in cubic special geometry
    Bellucci, Stefano
    Marrani, Alessio
    Roychowdhury, Raju
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (08)
  • [29] Gravity-mediated SUSY breaking, R symmetry, and hyperbolic Kahler geometry
    Pallis, Constantinos
    PHYSICAL REVIEW D, 2019, 100 (05)
  • [30] Some recent progress in non-Kahler geometry
    Zheng, Fangyang
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (11) : 2423 - 2434