Review: Carbon nanotube based electrochemical sensors for biomolecules

被引:808
作者
Jacobs, Christopher B. [1 ]
Peairs, M. Jennifer [1 ]
Venton, B. Jill [1 ]
机构
[1] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA
关键词
Field effect transistor sensor; Enzyme sensor; Dopamine; Virus; Immunosensor; Immunoglobulin; DIRECT ELECTRON-TRANSFER; SIMULTANEOUS VOLTAMMETRIC DETECTION; LOW POTENTIAL DETECTION; ENHANCED DNA BIOSENSOR; GLUCOSE-OXIDASE; URIC-ACID; PASTE ELECTRODE; AMPEROMETRIC BIOSENSOR; COMPOSITE FILM; ASCORBIC-ACID;
D O I
10.1016/j.aca.2010.01.009
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Carbon nanotubes (CNTs) have been incorporated in electrochemical sensors to decrease overpotential and improve sensitivity. In this review, we focus on recent literature that describes how CNT-based electrochemical sensors are being developed to detect neurotransmitters, proteins, small molecules Such as glucose, and DNA. Different types of electrochemical methods are used in these sensors including direct electrochemical detection with amperometry or voltammetry, indirect detection of an oxidation product using enzyme sensors. and detection of conductivity changes using CNT-field effect transistors (FETs). Future challenges for the field include miniaturizing sensors, developing methods to use only a specific nanotube allotrope, and simplifying manufacturing. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 127
页数:23
相关论文
共 195 条
[1]   Quantitative detection of protein using a top-gate carbon nanotube field effect transistor [J].
Abe, Masuhiro ;
Murata, Katsuyuki ;
Kojima, Atsuhiko ;
Ifuku, Yasuo ;
Shimizu, Mitsuaki ;
Ataka, Tatsuaki ;
Matsumoto, Kazuhiko .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (24) :8667-8670
[2]   Role of carbon nanotubes in electroanalytical chemistry -: A review [J].
Agui, Lourdes ;
Yanez-Sedeno, Paloma ;
Pingarron, Jose M. .
ANALYTICA CHIMICA ACTA, 2008, 622 (1-2) :11-47
[3]   In Vivo Imaging of Carbon Nanotube Biodistribution Using Magnetic Resonance Imaging [J].
Al Faraj, Achraf ;
Cieslar, Katarzyna ;
Lacroix, Ghislaine ;
Gaillard, Sophie ;
Canot-Soulas, Emmanuelle ;
Cremillieux, Yannick .
NANO LETTERS, 2009, 9 (03) :1023-1027
[4]   A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine [J].
Ali, Shah R. ;
Ma, Yufeng ;
Parajuli, Rishi R. ;
Balogun, Yetunde ;
Lai, Warren Y. -C. ;
He, Huixin .
ANALYTICAL CHEMISTRY, 2007, 79 (06) :2583-2587
[5]   Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes [J].
Ampurdanes, Jordi ;
Crespo, Gaston A. ;
Maroto, Alicia ;
Angeles Sarmentero, M. ;
Ballester, Pablo ;
Xavier Rius, F. .
BIOSENSORS & BIOELECTRONICS, 2009, 25 (02) :344-349
[6]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[7]   Recent advances in cholesterol biosensor [J].
Arya, Sunil K. ;
Datta, Monika ;
Malhotra, Bansi D. .
BIOSENSORS & BIOELECTRONICS, 2008, 23 (07) :1083-1100
[8]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[9]   Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes [J].
Bandow, S ;
Takizawa, M ;
Hirahara, K ;
Yudasaka, M ;
Iijima, S .
CHEMICAL PHYSICS LETTERS, 2001, 337 (1-3) :48-54
[10]   Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study [J].
Banks, CE ;
Compton, RG .
ANALYST, 2005, 130 (09) :1232-1239