VERY WEAK SOLUTIONS OF HIGHER-ORDER DEGENERATE PARABOLIC SYSTEMS

被引:1
作者
Boegelein, Verena [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
关键词
P-LAPLACIAN TYPE; HIGHER INTEGRABILITY; ELLIPTIC-SYSTEMS; REGULARITY; INEQUALITIES; EQUATIONS; MAPPINGS; MINIMA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-linear higher-order parabolic systems whose simplest model is the parabolic p-Laplacean system integral(Omega T) u . phi(t) - <vertical bar D(m)u vertical bar(p-2) D(m)u, D(m)phi > dz = 0 It turns out that the usual regularity assumptions on solutions can be weakened in the sense that going slightly below the natural integrability exponent still yields a classical weak solution. Namely, we prove the existence of some beta > 0 such that D(m)u is an element of L(p-beta) double right arrow D(m)u is an element of L(p+beta).
引用
收藏
页码:121 / 200
页数:80
相关论文
共 50 条
[21]   Study of Weak Solutions for Degenerate Parabolic Inequalities with Nonlocal Nonlinearities [J].
Dong, Yan .
SYMMETRY-BASEL, 2022, 14 (08)
[22]   Very weak solutions of subquadratic parabolic systems with non-standard p(x,t)-growth [J].
Li, Qifan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 156 :17-41
[23]   Uniform regularity of the weak solution to higher-order Navier-Stokes-Cahn-Hilliard systems [J].
Pan, Jiaojiao ;
Xing, Chao ;
Luo, Hong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
[24]   Uniform boundary estimates in homogenization of higher-order elliptic systems [J].
Niu, Weisheng ;
Xu, Yao .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) :97-128
[25]   Partial regularity and singular sets of solutions of higher order parabolic systems [J].
Boegelein, Verena .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (01) :61-122
[26]   Parameter-free higher-order Schrodinger systems with weak dissipation and forcing [J].
Keeler, J. S. ;
Humphries, B. S. ;
Alberello, A. ;
Parau, E. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2025, 481 (2317)
[27]   Gradient Higher Integrability for Degenerate Parabolic Double-Phase Systems [J].
Kim, Wontae ;
Kinnunen, Juha ;
Moring, Kristian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (05)
[28]   Higher order Schauder estimates for degenerate or singular parabolic equations [J].
Audrito, Alessandro ;
Fioravanti, Gabriele ;
Vita, Stefano .
REVISTA MATEMATICA IBEROAMERICANA, 2025, 41 (04) :1513-1554
[29]   Higher integrability for weak solutions to parabolic multi-phase equations [J].
Kim, Bogi ;
Oh, Jehan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 :223-298
[30]   Regularity for weak solutions to nondiagonal quasilinear degenerate elliptic systems [J].
Dong, Yan ;
Niu, Pengcheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) :2383-2414