VERY WEAK SOLUTIONS OF HIGHER-ORDER DEGENERATE PARABOLIC SYSTEMS

被引:1
作者
Boegelein, Verena [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
关键词
P-LAPLACIAN TYPE; HIGHER INTEGRABILITY; ELLIPTIC-SYSTEMS; REGULARITY; INEQUALITIES; EQUATIONS; MAPPINGS; MINIMA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-linear higher-order parabolic systems whose simplest model is the parabolic p-Laplacean system integral(Omega T) u . phi(t) - <vertical bar D(m)u vertical bar(p-2) D(m)u, D(m)phi > dz = 0 It turns out that the usual regularity assumptions on solutions can be weakened in the sense that going slightly below the natural integrability exponent still yields a classical weak solution. Namely, we prove the existence of some beta > 0 such that D(m)u is an element of L(p-beta) double right arrow D(m)u is an element of L(p+beta).
引用
收藏
页码:121 / 200
页数:80
相关论文
共 31 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[3]  
Adams R. A., 1978, SOBOLEV SPACES
[4]  
[Anonymous], 2001, Differential Integral Equations
[5]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[6]  
Bögelein V, 2008, ANN ACAD SCI FENN-M, V33, P387
[7]  
BOGELEIN V, 2007, THESIS FRIEDRICHALEX
[8]   ANALYTICAL FOUNDATIONS OF THE THEORY OF QUASICONFORMAL MAPPINGS IN RN [J].
BOJARSKI, B ;
IWANIEC, T .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02) :257-324
[9]  
Campanato S., 1964, Ann. Sc. Norm. Super. Pisa, V18, P137
[10]  
COIFMAN R, 1971, ANAL HARMONIQUE NONC