Measurement-device-independent quantum key distribution with hyper-encoding

被引:101
作者
Cui, Zheng-Xia [1 ,2 ,4 ]
Zhong, Wei [2 ,4 ]
Zhou, Lan [1 ,2 ,3 ,4 ]
Sheng, Yu-Bo [2 ,3 ,4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China
[3] Univ Waterloo, Inst Quantum Comp, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
[4] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Jiangsu, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 11期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
quantum communication; measurement device-independent quantum key distribution; high-dimensional; hyper encoding; HYPERENTANGLED BELL STATES; UNCONDITIONAL SECURITY; DOT SPINS; POLARIZATION; PHOTONS; SYSTEMS; ATTACK;
D O I
10.1007/s11433-019-1438-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement device-independent quantum key distribution (MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes. Increasing each individual photon's channel capacity is an e fficient way to increase the key generation rate, and high-dimensional (HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom (DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure, even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.
引用
收藏
页数:10
相关论文
共 81 条
[31]   Experimental Measurement-Device-Independent Quantum Key Distribution [J].
Liu, Yang ;
Chen, Teng-Yun ;
Wang, Liu-Jun ;
Liang, Hao ;
Shentu, Guo-Liang ;
Wang, Jian ;
Cui, Ke ;
Yin, Hua-Lei ;
Liu, Nai-Le ;
Li, Li ;
Ma, Xiongfeng ;
Pelc, Jason S. ;
Fejer, M. M. ;
Peng, Cheng-Zhi ;
Zhang, Qiang ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[32]   Decoy state quantum key distribution [J].
Lo, HK ;
Ma, XF ;
Chen, K .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)
[33]   Unconditional security of quantum key distribution over arbitrarily long distances [J].
Lo, HK ;
Chau, HF .
SCIENCE, 1999, 283 (5410) :2050-2056
[34]   Measurement-Device-Independent Quantum Key Distribution [J].
Lo, Hoi-Kwong ;
Curty, Marcos ;
Qi, Bing .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[35]   Theoretically efficient high-capacity quantum-key-distribution scheme [J].
Long, GL ;
Liu, XS .
PHYSICAL REVIEW A, 2002, 65 (03) :3
[36]   Chip-integrated visible-telecom entangled photon pair source for quantum communication [J].
Lu, Xiyuan ;
Li, Qing ;
Westly, Daron A. ;
Moille, Gregory ;
Singh, Anshuman ;
Anant, Vikas ;
Srinivasan, Kartik .
NATURE PHYSICS, 2019, 15 (04) :373-+
[37]  
Lütkenhaus N, 2000, PHYS REV A, V61, DOI 10.1103/PhysRevA.61.052304
[38]   Hacking commercial quantum cryptography systems by tailored bright illumination [J].
Lydersen, Lars ;
Wiechers, Carlos ;
Wittmann, Christoffer ;
Elser, Dominique ;
Skaar, Johannes ;
Makarov, Vadim .
NATURE PHOTONICS, 2010, 4 (10) :686-689
[39]   Practical decoy state for quantum key distribution [J].
Ma, XF ;
Qi, B ;
Zhao, Y ;
Lo, HK .
PHYSICAL REVIEW A, 2005, 72 (01)
[40]   Faked states attack on quantum cryptosystems [J].
Makarov, V ;
Hjelme, DR .
JOURNAL OF MODERN OPTICS, 2005, 52 (05) :691-705