Measurement-device-independent quantum key distribution with hyper-encoding

被引:101
作者
Cui, Zheng-Xia [1 ,2 ,4 ]
Zhong, Wei [2 ,4 ]
Zhou, Lan [1 ,2 ,3 ,4 ]
Sheng, Yu-Bo [2 ,3 ,4 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China
[3] Univ Waterloo, Inst Quantum Comp, 200 Univ Ave W, Waterloo, ON N2L 3G1, Canada
[4] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Jiangsu, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2019年 / 62卷 / 11期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
quantum communication; measurement device-independent quantum key distribution; high-dimensional; hyper encoding; HYPERENTANGLED BELL STATES; UNCONDITIONAL SECURITY; DOT SPINS; POLARIZATION; PHOTONS; SYSTEMS; ATTACK;
D O I
10.1007/s11433-019-1438-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement device-independent quantum key distribution (MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes. Increasing each individual photon's channel capacity is an e fficient way to increase the key generation rate, and high-dimensional (HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom (DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure, even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.
引用
收藏
页数:10
相关论文
共 81 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]   Large conditional single-photon cross-phase modulation [J].
Beck, Kristin M. ;
Hosseini, Mahdi ;
Duan, Yiheng ;
Vuletic, Vladan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (35) :9740-9744
[3]  
Bennett C. H., 1984, Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, P175, DOI [10.1016/j.tcs.2011.08.039, DOI 10.1016/J.TCS.2014.05.025]
[4]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[5]  
Chau H., 2016, ARXIV160808329
[6]   Three-step three-party quantum secure direct communication [J].
Chen, Shan-Shan ;
Zhou, Lan ;
Zhong, Wei ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
[7]   Numerical approach for unstructured quantum key distribution [J].
Coles, Patrick J. ;
Metodiev, Eric M. ;
Lutkenhaus, Norbert .
NATURE COMMUNICATIONS, 2016, 7
[8]   Finite-key analysis for measurement-device-independent quantum key distribution [J].
Curty, Marcos ;
Xu, Feihu ;
Cui, Wei ;
Lim, Charles Ci Wen ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2014, 5
[9]   High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces [J].
Dellantonio, Luca ;
Sorensen, Anders S. ;
Bacco, Davide .
PHYSICAL REVIEW A, 2018, 98 (06)
[10]   Secure direct communication with a quantum one-time pad [J].
Deng, FG ;
Long, GL .
PHYSICAL REVIEW A, 2004, 69 (05) :052319-1