REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS

被引:4
作者
Kaleta, Kamil [1 ]
Olszewski, Mariusz [1 ]
Pietruska-Paluba, Katarzyna [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Subordinate Brownian Motion; Projection; Good Labeling Property; Reflected Process; Nested Fractal; Sierpinski Gasket; Neumann Boundary Conditions; Integrated Density of States; DENSITY-OF-STATES; LIFSCHITZ SINGULARITY; PERIODIC-FUNCTIONS; SIERPINSKI; DIFFUSION; GASKET;
D O I
10.1142/S0218348X19501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large class of planar simple nested fractals, we prove the existence of the reflected diffusion on a complex of an arbitrary size. Such a process is obtained as a folding projection of the free Brownian motion from the unbounded fractal. We give sharp necessary geometric conditions for the fractal under which this projection can be well defined, and illustrate them by numerous examples. We then construct a proper version of the transition probability densities for the reflected process and we prove that it is a continuous, bounded and symmetric function which satisfies the Chapman-Kolmogorov equations. These provide us with further regularity properties of the reflected process such us Markov, Feller and strong Feller property.
引用
收藏
页数:29
相关论文
共 50 条
[31]   Approximation of skew Brownian motion by snapping-out Brownian motions [J].
Bobrowski, Adam ;
Ratajczyk, Elzbieta .
MATHEMATISCHE NACHRICHTEN, 2025, 298 (03) :829-848
[32]   COMPLEX POWERS OF THE LAPLACIAN ON AFFINE NESTED FRACTALS AS CALDERON-ZYGMUND OPERATORS [J].
Ionescu, Marius ;
Rogers, Luke G. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) :2155-2175
[33]   On the theory of Brownian motion in compressible fluids [J].
Schram, PPJM ;
Yakimenko, IP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 260 (1-2) :73-89
[34]   Directing Brownian Motion on a Periodic Surface [J].
Speer, David ;
Eichhorn, Ralf ;
Reimann, Peter .
PHYSICAL REVIEW LETTERS, 2009, 102 (12)
[35]   Algorithm for generating a Brownian motion on a sphere [J].
Carlsson, Tobias ;
Ekholm, Tobias ;
Elvingson, Christer .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (50)
[36]   Diffusion in a model for active Brownian motion [J].
Condat, CA ;
Sibona, GJ .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 :235-243
[37]   On the Asymptotic Behavior of the Hyperbolic Brownian Motion [J].
Cammarota, Valentina ;
De Gregorio, Alessandro ;
Macci, Claudio .
JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (06) :1550-1568
[38]   The paradigm of complex probability and the Brownian motion [J].
Abou Jaoude, Abdo .
SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01) :478-503
[39]   Brownian motion under annihilation dynamics [J].
de Soria, Maria Isabel Garcia ;
Maynar, Pablo ;
Trizac, Emmanuel .
PHYSICAL REVIEW E, 2008, 78 (06)
[40]   Active Brownian motion in two dimensions [J].
Basu, Urna ;
Majumdar, Satya N. ;
Rosso, Alberto ;
Schehr, Gregory .
PHYSICAL REVIEW E, 2018, 98 (06)