REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS

被引:4
作者
Kaleta, Kamil [1 ]
Olszewski, Mariusz [1 ]
Pietruska-Paluba, Katarzyna [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Subordinate Brownian Motion; Projection; Good Labeling Property; Reflected Process; Nested Fractal; Sierpinski Gasket; Neumann Boundary Conditions; Integrated Density of States; DENSITY-OF-STATES; LIFSCHITZ SINGULARITY; PERIODIC-FUNCTIONS; SIERPINSKI; DIFFUSION; GASKET;
D O I
10.1142/S0218348X19501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large class of planar simple nested fractals, we prove the existence of the reflected diffusion on a complex of an arbitrary size. Such a process is obtained as a folding projection of the free Brownian motion from the unbounded fractal. We give sharp necessary geometric conditions for the fractal under which this projection can be well defined, and illustrate them by numerous examples. We then construct a proper version of the transition probability densities for the reflected process and we prove that it is a continuous, bounded and symmetric function which satisfies the Chapman-Kolmogorov equations. These provide us with further regularity properties of the reflected process such us Markov, Feller and strong Feller property.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Granular Brownian motion
    Sarracino, A.
    Villamaina, D.
    Costantini, G.
    Puglisi, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [22] Large deviations for Brownian motion on the Sierpinski gasket
    Ben Arous, G
    Kumagai, T
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 85 (02) : 225 - 235
  • [23] Brownian motion in planetary migration
    Murray-Clay, Ruth A.
    Chiang, Eugene I.
    ASTROPHYSICAL JOURNAL, 2006, 651 (02) : 1194 - 1208
  • [24] BROWNIAN MOTION IN DIRE STRAITS
    Holcman, D.
    Schuss, Z.
    MULTISCALE MODELING & SIMULATION, 2012, 10 (04) : 1204 - 1231
  • [25] Brownian Motion in Minkowski Space
    O'Hara, Paul
    Rondoni, Lamberto
    ENTROPY, 2015, 17 (06): : 3581 - 3594
  • [26] Theory of Hot Brownian Motion
    Rings, Daniel
    Selmke, Markus
    Cichos, Frank
    Kroy, Klaus
    SOFT MATTER, 2011, 7 (07) : 3441 - 3452
  • [27] Brownian motion in inhomogeneous suspensions
    Yang, Mingcheng
    Ripoll, Marisol
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [28] Brownian motion with singular drift
    Bass, RF
    Chen, ZQ
    ANNALS OF PROBABILITY, 2003, 31 (02) : 791 - 817
  • [29] Rotational hot Brownian motion
    Rings, D.
    Chakraborty, D.
    Kroy, K.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [30] HAUSDORFF MEASURE OF ARCS AND BROWNIAN MOTION ON BROWNIAN SPATIAL TREES
    Croydon, David A.
    ANNALS OF PROBABILITY, 2009, 37 (03) : 946 - 978