REFLECTED BROWNIAN MOTION ON SIMPLE NESTED FRACTALS

被引:4
作者
Kaleta, Kamil [1 ]
Olszewski, Mariusz [1 ]
Pietruska-Paluba, Katarzyna [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Subordinate Brownian Motion; Projection; Good Labeling Property; Reflected Process; Nested Fractal; Sierpinski Gasket; Neumann Boundary Conditions; Integrated Density of States; DENSITY-OF-STATES; LIFSCHITZ SINGULARITY; PERIODIC-FUNCTIONS; SIERPINSKI; DIFFUSION; GASKET;
D O I
10.1142/S0218348X19501044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a large class of planar simple nested fractals, we prove the existence of the reflected diffusion on a complex of an arbitrary size. Such a process is obtained as a folding projection of the free Brownian motion from the unbounded fractal. We give sharp necessary geometric conditions for the fractal under which this projection can be well defined, and illustrate them by numerous examples. We then construct a proper version of the transition probability densities for the reflected process and we prove that it is a continuous, bounded and symmetric function which satisfies the Chapman-Kolmogorov equations. These provide us with further regularity properties of the reflected process such us Markov, Feller and strong Feller property.
引用
收藏
页数:29
相关论文
共 50 条
[21]   Weird Brownian motion [J].
Eliazar, Iddo ;
Arutkin, Maxence .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (32)
[22]   Large deviations for Brownian motion on the Sierpinski gasket [J].
Ben Arous, G ;
Kumagai, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 85 (02) :225-235
[23]   Brownian motion in planetary migration [J].
Murray-Clay, Ruth A. ;
Chiang, Eugene I. .
ASTROPHYSICAL JOURNAL, 2006, 651 (02) :1194-1208
[24]   BROWNIAN MOTION IN DIRE STRAITS [J].
Holcman, D. ;
Schuss, Z. .
MULTISCALE MODELING & SIMULATION, 2012, 10 (04) :1204-1231
[25]   Brownian Motion in Minkowski Space [J].
O'Hara, Paul ;
Rondoni, Lamberto .
ENTROPY, 2015, 17 (06) :3581-3594
[26]   Theory of Hot Brownian Motion [J].
Rings, Daniel ;
Selmke, Markus ;
Cichos, Frank ;
Kroy, Klaus .
SOFT MATTER, 2011, 7 (07) :3441-3452
[27]   Brownian motion in inhomogeneous suspensions [J].
Yang, Mingcheng ;
Ripoll, Marisol .
PHYSICAL REVIEW E, 2013, 87 (06)
[28]   Brownian motion with singular drift [J].
Bass, RF ;
Chen, ZQ .
ANNALS OF PROBABILITY, 2003, 31 (02) :791-817
[29]   Rotational hot Brownian motion [J].
Rings, D. ;
Chakraborty, D. ;
Kroy, K. .
NEW JOURNAL OF PHYSICS, 2012, 14
[30]   HAUSDORFF MEASURE OF ARCS AND BROWNIAN MOTION ON BROWNIAN SPATIAL TREES [J].
Croydon, David A. .
ANNALS OF PROBABILITY, 2009, 37 (03) :946-978