Comparing a coevolutionary genetic algorithm for multiobjective optimization

被引:0
作者
Lohn, JD [1 ]
Kraus, WF [1 ]
Haith, GL [1 ]
机构
[1] NASA, Ames Res Ctr, Computat Sci Div, Moffett Field, CA 94035 USA
来源
CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2002年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of,evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA yields poor coverage across the Pareto front, yet finds a solution that dominates all the solutions produced by the eight other algorithms.
引用
收藏
页码:1157 / 1162
页数:6
相关论文
共 50 条
  • [31] Chaos-genetic algorithm for multiobjective optimization
    Qi, Rongbin
    Qian, Feng
    Li, Shaojun
    Wang, Zhenlei
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1563 - +
  • [32] A problem space genetic algorithm in multiobjective optimization
    Ayten Turkcan
    M. Selim Akturk
    Journal of Intelligent Manufacturing, 2003, 14 : 363 - 378
  • [33] An Improved Immune Genetic Algorithm for Multiobjective Optimization
    He, Guixia
    Gao, Jiaquan
    Hu, Luoke
    ADVANCES IN SWARM INTELLIGENCE, PT 1, PROCEEDINGS, 2010, 6145 : 643 - +
  • [34] Multiobjective Optimization for IMRT Using Genetic Algorithm
    Phillips, M.
    Kim, M.
    Ghate, A.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [35] A Genetic Algorithm for Multiobjective Hard Scheduling Optimization
    Nino, E.
    Ardila, C.
    Perez, A.
    Donoso, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2010, 5 (05) : 825 - 836
  • [36] A problem space genetic algorithm in multiobjective optimization
    Turkcan, A
    Akturk, MS
    JOURNAL OF INTELLIGENT MANUFACTURING, 2003, 14 (3-4) : 363 - 378
  • [37] Multiobjective optimization design with pareto genetic algorithm
    Cheng, FY
    Li, D
    JOURNAL OF STRUCTURAL ENGINEERING, 1997, 123 (09) : 1252 - 1261
  • [38] PSFGA:: A parallel genetic algorithm for multiobjective optimization
    de Toro, F
    Ortega, J
    Fernández, J
    Díaz, A
    10TH EUROMICRO WORKSHOP ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, PROCEEDINGS, 2002, : 384 - 391
  • [39] A Coevolutionary Framework for Constrained Multiobjective Optimization Problems
    Tian, Ye
    Zhang, Tao
    Xiao, Jianhua
    Zhang, Xingyi
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (01) : 102 - 116
  • [40] A decision variable classification-based cooperative coevolutionary algorithm for dynamic multiobjective optimization
    Xie, Huipeng
    Zou, Juan
    Yang, Shengxiang
    Zheng, Jinhua
    Ou, Junwei
    Hu, Yaru
    INFORMATION SCIENCES, 2021, 560 : 307 - 330