COMPLEX B-SPLINE COLLOCATION METHOD FOR SOLVING WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND

被引:0
作者
Ramezani, M. [1 ]
Jafari, H. [2 ]
Johnston, S. J. [3 ]
Baleanu, D. [4 ]
机构
[1] Islamic Azad Univ, Parand Branch, Young Researchers & Elite Club, Tehran, Iran
[2] Univ Mazandaran, Dept Math, Babol Sar, Iran
[3] Univ S Africa, Dept Math Sci, POB 392, ZA-0003 Johannesburg, South Africa
[4] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey
关键词
Volterra integral equation; complex B-spline; collocation method; NUMERICAL-SOLUTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a new collocation type method for solving Volterra integral equations of the second kind with weakly singular kernels. In this method we use the complex B-spline basics in collocation method for solving Volterra integral. We compare the results obtained by this method with exact solution. A few numerical examples are presented to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1091 / 1103
页数:13
相关论文
共 29 条
[1]  
Aleksandrov V. M., 1984, INZH ZH MEKH TVERD T, V2, P77
[2]  
[Anonymous], 1993, Applied Mathematical Sciences
[3]  
Atkinson K.E, 1997, CAMBRIDGE MONOGRAPHS, DOI DOI 10.1017/CBO9780511626340
[4]   Quantitative Fourier analysis of approximation techniques: Part I - Interpolators and projectors [J].
Blu, T ;
Unser, M .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (10) :2783-2795
[5]  
BRUNNER H, 1985, MATH COMPUT, V45, P417, DOI 10.1090/S0025-5718-1985-0804933-3
[6]  
Brunner H., 2010, HOP, P13
[7]  
Brunner Hermann, 2004, COLLOCATION METHODS, DOI DOI 10.1017/CBO9780511543234
[8]  
Chui C. K., 1988, SOC IND APPL MATH, V2, DOI DOI 10.1137/1.9781611970173
[9]   High order product integration methods for a volterra integral equation with logarithmic singular kernel [J].
Diogo, T ;
Franco, NB ;
Lima, P .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (02) :217-235
[10]   Complex B-splines [J].
Forster, B ;
Blu, T ;
Unser, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) :261-282