Levy anomalous diffusion and fractional Fokker-Planck equation

被引:121
|
作者
Yanovsky, VV
Chechkin, AV
Schertzer, D
Tur, AV
机构
[1] Univ Paris 06, Modelisat Mecan Lab, F-75252 Paris 05, France
[2] Natl Acad Sci Ukraine, Inst Single Crystals, UA-310001 Kharkov, Ukraine
[3] Observ Midi Pyrenees, F-31400 Toulouse, France
来源
PHYSICA A | 2000年 / 282卷 / 1-2期
关键词
diffusion; transport; statistical physics; stochastic systems; scaling; renormalization;
D O I
10.1016/S0378-4371(99)00565-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the Fokker-Planck equation can be generalized into a 'fractional Fokker-Planck' equation, i.e., an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable sourer to the classical Gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non-trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments, The (mono-) scaling behaviors of the fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the fractional Fokker-Planck equation in physics, (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 34
页数:22
相关论文
共 50 条
  • [21] Fluctuation relations for anomalous dynamics generated by time-fractional Fokker-Planck equations
    Dieterich, Peter
    Klages, Rainer
    Chechkin, Aleksei V.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [22] DIFFUSION LIMIT OF FOKKER-PLANCK EQUATION WITH HEAVY TAIL EQUILIBRIA
    Nasreddine, Elissar
    Puel, Marjolaine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 1 - 17
  • [23] Anomalous transport in velocity space: from Fokker-Planck to the general equation
    Trigger, S. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (28)
  • [24] Probability flow solution of the Fokker-Planck equation
    Boffi, Nicholas M.
    Vanden-Eijnden, Eric
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [25] Fokker-Planck equation for Feynman-Kac transform of anomalous processes
    Zhang, Shuaiqi
    Chen, Zhen-Qing
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 147 : 300 - 326
  • [26] Green function for a non-Markovian Fokker-Planck equation: Comb-model and anomalous diffusion
    da Silva, L. R.
    Tateishi, A. A.
    Lenzi, M. K.
    Lenzi, E. K.
    da Silva, P. C.
    BRAZILIAN JOURNAL OF PHYSICS, 2009, 39 (2A) : 483 - 487
  • [27] A fractional Fokker-Planck equation for non-singular kernel operators
    dos Santos, M. A. F.
    Gomez, Ignacio S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [28] NUMERICAL SOLUTION OF TIME-FRACTIONAL ORDER FOKKER-PLANCK EQUATION
    Prakash, Amit
    Kumar, Manoj
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 446 - 454
  • [29] A General Solution of the Fokker-Planck Equation
    Araujo, M. T.
    Drigo Filho, E.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 146 (03) : 610 - 619
  • [30] Approximate solution for Fokker-Planck equation
    Araujo, M. T.
    Drigo Filho, E.
    CONDENSED MATTER PHYSICS, 2015, 18 (04)