Levy anomalous diffusion and fractional Fokker-Planck equation

被引:121
|
作者
Yanovsky, VV
Chechkin, AV
Schertzer, D
Tur, AV
机构
[1] Univ Paris 06, Modelisat Mecan Lab, F-75252 Paris 05, France
[2] Natl Acad Sci Ukraine, Inst Single Crystals, UA-310001 Kharkov, Ukraine
[3] Observ Midi Pyrenees, F-31400 Toulouse, France
来源
PHYSICA A | 2000年 / 282卷 / 1-2期
关键词
diffusion; transport; statistical physics; stochastic systems; scaling; renormalization;
D O I
10.1016/S0378-4371(99)00565-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the Fokker-Planck equation can be generalized into a 'fractional Fokker-Planck' equation, i.e., an equation which includes fractional space differentiations, in order to encompass the wide class of anomalous diffusions due to a Levy stable stochastic forcing. A precise determination of this equation is obtained by substituting a Levy stable sourer to the classical Gaussian one in the Langevin equation. This yields not only the anomalous diffusion coefficient, but a non-trivial fractional operator which corresponds to the possible asymmetry of the Levy stable source. Both of them cannot be obtained by scaling arguments, The (mono-) scaling behaviors of the fractional Fokker-Planck equation and of its solutions are analysed and a generalization of the Einstein relation for the anomalous diffusion coefficient is obtained. This generalization yields a straightforward physical interpretation of the parameters of Levy stable distributions. Furthermore, with the help of important examples, we show the applicability of the fractional Fokker-Planck equation in physics, (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:13 / 34
页数:22
相关论文
共 50 条
  • [1] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)
  • [2] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [3] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [4] Fokker-Planck equation in a wedge domain: Anomalous diffusion and survival probability
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [5] Derivation of the Fractional Fokker-Planck Equation for Stable Levy with Financial Applications
    Aljethi, Reem Abdullah
    Kilicman, Adem
    MATHEMATICS, 2023, 11 (05)
  • [6] Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable Processes
    Anderson, Johan
    Moradi, Sara
    Rafiq, Tariq
    ENTROPY, 2018, 20 (10):
  • [7] Fractional Fokker-Planck equation for anomalous diffusion in a potential: Exact matrix continued fraction solutions
    Coffey, W. T.
    Kalmykov, Y. P.
    Titov, S. V.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08) : 1847 - 1856
  • [8] Analytic description of anomalous diffusion in heterogeneous environments: Fokker-Planck equation without fractional derivatives
    Likhomanova, Polina
    Kalashnikov, Ilia
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [9] Levy stable distribution and space-fractional Fokker-Planck type equation
    Duan, Jun-Sheng
    Chaolu, Temuer
    Wang, Zhong
    Fu, Shou-Zhong
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 17 - 20
  • [10] A nonlinear Fokker-Planck equation approach for interacting systems: Anomalous diffusion and Tsallis statistics
    Marin, D.
    Ribeiro, M. A.
    Ribeiro, H., V
    Lenzi, E. K.
    PHYSICS LETTERS A, 2018, 382 (29) : 1903 - 1907