Counting nodal surfaces in molecular orbitals: Elimination of artificial nodes

被引:5
作者
Takeda, Naoya [1 ]
Hatano, Yasuyo [1 ]
Yamamoto, Shigeyoshi [2 ]
Tatewaki, Hiroshi [3 ,4 ]
机构
[1] Chukyo Univ, Sch Informat Sci & Technol, Toyota 4700393, Japan
[2] Chukyo Univ, Sch Int Liberal Studies, Nagoya, Aichi 4668666, Japan
[3] Nagoya City Univ, Grad Sch Nat Sci, Nagoya, Aichi 4678501, Japan
[4] Chukyo Univ, Inst Adv Studies Artificial Intelligence, Toyota 4700393, Japan
关键词
Nodal surface; Artificial node; Molecular orbital; Basis set; Gaussian-type function; FULL CONFIGURATION-INTERACTION; GAUSSIAN BASIS FUNCTIONS; STATE BARRIER HEIGHT; QUANTUM MONTE-CARLO; FIRST-ROW ATOMS; BASIS-SET; WAVE-FUNCTIONS; PERTURBATION-THEORY; CI CALCULATIONS; WATER MOLECULE;
D O I
10.1016/j.comptc.2014.06.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The nodal surfaces of a molecular orbital (MO) provide significant information about electronic structure. For example, antibonding can be identified by the existence of a nodal surface between two atoms. This paper sets out an algorithm for finding nodal surfaces in an MO. Unfortunately, when a non-orthogonal basis set expansion is used (e.g., contracted Gaussian-type functions (CGTFs)), the calculated MOs may contain nodal surfaces that are artifacts of the method of calculation. These artifacts are obstacles to any algorithmic counting of nodal surfaces, so it is important to eliminate them. We present a simple method for eliminating artificial nodes by introducing a radius r_(fbd) Nodes outside a sphere of radius red are considered to be artifacts and are eliminated. The radius r_(fbd) is determined from the radial distributions of the respective CGTFs that constitute the MO under consideration. The space outside the sphere of r_(fbd) is called the forbidden space, and the charge distribution is set to zero in that space. We illustrate this method by analyzing nodal surfaces in the Li atom, Be atom, Zn atom, H2O molecule, and formaldehyde. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 41 条
[1]  
[Anonymous], 1935, Introduction to Quantum Mechanics with Applications to Chemistry
[2]   Rydberg states with quantum Monte Carlo [J].
Bande, A ;
Lüchow, A ;
Della Sala, F ;
Görling, A .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (11)
[3]   BENCHMARK FULL CONFIGURATION-INTERACTION CALCULATIONS ON H2O, F, AND F- [J].
BAUSCHLICHER, CW ;
TAYLOR, PR .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (05) :2779-2783
[4]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[5]   An investigation of nodal structures and the construction of trial wave functions [J].
Bressanini, D ;
Morosi, G ;
Tarasco, S .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (20)
[6]   Unexpected symmetry in the nodal structure of the he atom [J].
Bressanini, D ;
Reynolds, PJ .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[7]   EFFICIENT DIFFUSE FUNCTION-AUGMENTED BASIS SETS FOR ANION CALCULATIONS. III. THE 3-21+G BASIS SET FOR FIRST-ROW ELEMENTS, LI-F [J].
CLARK, T ;
CHANDRASEKHAR, J ;
SPITZNAGEL, GW ;
SCHLEYER, PV .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :294-301
[8]   Accurate universal gaussian basis set for all atoms of the periodic table [J].
de Castro, EVR ;
Jorge, FE .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (13) :5225-5229
[9]   QUANTUM ELECTRODYNAMICAL CORRECTIONS TO FINE-STRUCTURE OF HELIUM [J].
DOUGLAS, M ;
KROLL, NM .
ANNALS OF PHYSICS, 1974, 82 (01) :89-155
[10]   A COMMENT ON SEVERAL RESULTS OF CI CALCULATIONS FOR H2O [J].
DUCH, W ;
KARWOWSKI, J ;
DIERCKSEN, GHF .
CHEMICAL PHYSICS LETTERS, 1988, 144 (04) :421-422