Some congruences connecting quadratic class numbers with continued fractions

被引:3
作者
Cheng, Weidong [1 ,2 ]
Guo, Xuejun [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Chongqing Inst Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
ideal class numbers; quadratic fields; continued fractions; Hirzebruch sums; Dedekind sums; KRONECKER LIMIT FORMULA;
D O I
10.4064/aa8640-4-2019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:309 / 340
页数:32
相关论文
共 50 条
[32]   Some results concerning certain periodic continued fractions [J].
Cheng, K ;
Williams, H .
ACTA ARITHMETICA, 2005, 117 (03) :247-264
[33]   Fractional dimension of some exceptional sets in continued fractions [J].
Hussain, Mumtaz ;
Smith, Rebecca ;
Zhang, Zhenliang .
COMPTES RENDUS MATHEMATIQUE, 2025, 363
[34]   CLASS NUMBERS OF QUADRATIC FIELDS, MERSENNE NUMBERS, FERMAT NUMBERS, AND EXPONENTIAL DIOPHANTINE EQUATIONS [J].
Mollin, R. A. .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 9 (01) :129-133
[35]   A note on the divisibility of class numbers of real quadratic fields [J].
Yu, G .
JOURNAL OF NUMBER THEORY, 2002, 97 (01) :35-44
[36]   Consecutive Real Quadratic Fields with Large Class Numbers [J].
Cherubini, Giacomo ;
Fazzari, Alessandro ;
Granville, Andrew ;
Kala, Viterslav ;
Yatsyna, Pavlo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) :12052-12063
[37]   Symmetries of quadratic form classes and of quadratic surd continued fractions. Part II: Classification of the periods' palindromes [J].
Aicardi, Francesca .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (01) :83-124
[38]   Congruences for class numbers of Q(√±2p) when p≡3 (mod 4) is prime [J].
Kim, Jigu ;
Mizuno, Yoshinori .
RAMANUJAN JOURNAL, 2024, 64 (04) :1179-1197
[39]   On Consecutive 1's in Continued Fractions Expansions of Square Roots of Prime Numbers [J].
Miska, Piotr ;
Ulas, Maciej .
EXPERIMENTAL MATHEMATICS, 2019, :238-251
[40]   Symmetries of quadratic form classes and of quadratic surd continued fractions. Part II: Classification of the periods’ palindromes [J].
Francesca Aicardi .
Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 :83-124