An Exact Algorithm for TSP in Degree-3 Graphs Via Circuit Procedure and Amortization on Connectivity Structure

被引:13
作者
Xiao, Mingyu [1 ]
Nagamochi, Hiroshi [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
[2] Kyoto Univ, Dept Appl Math & Phys, Grad Sch Informat, Kyoto 606, Japan
基金
中国国家自然科学基金;
关键词
Traveling salesman problem; Exact exponential algorithm; Graph algorithm; Connectivity; Measure and conquer; TRAVELING SALESMAN PROBLEM;
D O I
10.1007/s00453-015-9970-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paper presents an -time and polynomial-space algorithm for the traveling salesman problem in an -vertex graph with maximum degree 3. This improves all previous time bounds of polynomial-space algorithms for this problem. Our algorithm is a simple branch-and-search algorithm with only one branch rule designed on a cut-circuit structure of a graph induced by unprocessed edges. To improve a time bound by a simple analysis on measure and conquer, we introduce an amortization scheme over the cut-circuit structure by defining the measure of an instance to be the sum of not only weights of vertices but also weights of connected components of the induced graph.
引用
收藏
页码:713 / 741
页数:29
相关论文
共 15 条
  • [1] Björklund A, 2008, LECT NOTES COMPUT SC, V5125, P198, DOI 10.1007/978-3-540-70575-8_17
  • [2] Determinant Sums for Undirected Hamiltonicity
    Bjorklund, Andreas
    [J]. 2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 173 - 182
  • [3] Bodlaender HL, 2013, LECT NOTES COMPUT SC, V7965, P196, DOI 10.1007/978-3-642-39206-1_17
  • [4] Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions
    Dorn F.
    Penninkx E.
    Bodlaender H.L.
    Fomin F.V.
    [J]. Algorithmica (New York), 2010, 58 (03): : 790 - 810
  • [5] Eppstein David, 2007, Journal of Graph Algorithms and Applications, V11, P61, DOI 10.7155/jgaa.00137
  • [6] Quasiconvex Analysis of Multivariate Recurrence Equations for Backtracking Algorithms
    Eppstein, David
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (04)
  • [7] Fomin FV, 2010, TEXTS THEOR COMPUT S, P1, DOI 10.1007/978-3-642-16533-7_1
  • [8] Fomin FV, 2005, LECT NOTES COMPUT SC, V3580, P191
  • [9] Finding and enumerating Hamilton cycles in 4-regular graphs
    Gebauer, Heidi
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (35) : 4579 - 4591
  • [10] Iwama K, 2007, LECT NOTES COMPUT SC, V4598, P108