Information flow and error scaling for fully quantum control

被引:4
作者
Gherardini, Stefano [1 ,2 ,3 ,4 ]
Mueller, Matthias M. [5 ]
Montangero, Simone [6 ,7 ,8 ]
Calarco, Tommaso [5 ,9 ]
Caruso, Filippo [2 ,3 ]
机构
[1] CNR INO, Area Sci Pk, I-34149 Trieste, Italy
[2] Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, LENS, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[4] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[5] Forschungszentrum Julich, Peter Grunberg Inst Quantum Control PGI 8, Julich, Germany
[6] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy
[7] Univ Padua, Padua Quantum Technol Res Ctr, Padua, Italy
[8] Ist Nazl Fis Nucl INFN, Sez Padova, I-35131 Padua, Italy
[9] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
基金
欧盟地平线“2020”;
关键词
SCHRODINGER CAT STATES; GENERATION; COMMUNICATION; ENTANGLEMENT; CHANNELS; DYNAMICS;
D O I
10.1103/PhysRevResearch.4.023027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optimally designed control of quantum systems is playing an increasingly important role to engineer novel and more efficient quantum technologies. Here, in the scenario represented by controlling an arbitrary quantum system via the interaction with an another optimally initialized auxiliary quantum system, we show that the quantum channel capacity sets the scaling behavior of the optimal control error. Specifically, by fitting the model to numerical data, we verify that the minimum control error is ensured by maximizing the quantum capacity of the channel mapping the initial control state into the target state of the controlled system, i.e., optimizing the quantum information flow from the controller to the system to be controlled. Analytical results, supported by numerical evidences, are provided when the systems and the controller are either qubits or single Bosonic modes.
引用
收藏
页数:10
相关论文
共 65 条
[31]  
Konnov A., 1999, AVTOMATIKA TELEMEKHA, V10, P77
[32]   Information Theoretical Analysis of Quantum Optimal Control [J].
Lloyd, S. ;
Montangero, S. .
PHYSICAL REVIEW LETTERS, 2014, 113 (01)
[33]   Coherent quantum feedback [J].
Lloyd, S .
PHYSICAL REVIEW A, 2000, 62 (02) :12
[34]   Optimal preparation of quantum states on an atom-chip device [J].
Lovecchio, C. ;
Schaefer, F. ;
Cherukattil, S. ;
Khan, M. Ali ;
Herrera, I. ;
Cataliotti, F. S. ;
Calarco, T. ;
Montangero, S. ;
Caruso, F. .
PHYSICAL REVIEW A, 2016, 93 (01)
[35]   Exploring constrained quantum control landscapes [J].
Moore, Katharine W. ;
Rabitz, Herschel .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (13)
[36]   Donor Spins in Silicon for Quantum Technologies [J].
Morello, Andrea ;
Pla, Jarryd J. ;
Bertet, Patrice ;
Jamieson, David N. .
ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (11)
[37]  
Muller M. M., ARXIV200616113
[38]  
Muller M. M., 2022, REP PROG PHYS
[39]   Experimental demonstration of fully coherent quantum feedback [J].
Nelson, RJ ;
Weinstein, Y ;
Cory, D ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (14) :3045-3048
[40]   Coherent quantum LQG control [J].
Nurdin, Hendra I. ;
James, Matthew R. ;
Petersen, Ian R. .
AUTOMATICA, 2009, 45 (08) :1837-1846