Implementation of the Australian Computer-Assisted Theragnostics (AusCAT) network for radiation oncology data extraction, reporting and distributed learning

被引:17
作者
Field, Matthew [1 ,2 ]
Vinod, Shalini [1 ,2 ,3 ]
Aherne, Noel [4 ,5 ]
Carolan, Martin [6 ]
Dekker, Andre [7 ]
Delaney, Geoff [1 ,2 ,3 ]
Greenham, Stuart [4 ]
Hau, Eric [8 ,9 ]
Lehmann, Joerg [10 ,11 ,12 ]
Ludbrook, Joanna [11 ]
Miller, Andrew [6 ]
Rezo, Angela [13 ]
Selvaraj, Jothybasu [1 ,13 ]
Sykes, Jonathan [8 ,12 ]
Holloway, Lois [1 ,2 ,3 ,12 ]
Thwaites, David [12 ]
机构
[1] UNSW, South Western Sydney Clin Sch, Fac Med, Sydney, NSW, Australia
[2] Ingham Inst Appl Med Res, 1 Campbell St, Liverpool, NSW 2170, Australia
[3] Liverpool & Macarthur Canc Therapy Centres, Liverpool, Merseyside, England
[4] Mid North Coast Canc Inst, Coffs Harbour, NSW, Australia
[5] Univ New South Wales, Rural Clin Sch, Fac Med, Sydney, NSW, Australia
[6] Illawarra Canc Care Ctr, Wollongong, NSW, Australia
[7] Maastricht Univ, GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
[8] Sydney West Radiat Oncol Network, Sydney, NSW, Australia
[9] Univ Sydney, Westmead Clin Sch, Sydney, NSW, Australia
[10] Univ Newcastle, Sch Math & Phys Sci, Newcastle, NSW, Australia
[11] Calvary Mater, Dept Radiat Oncol, Newcastle, NSW, Australia
[12] Univ Sydney, Inst Med Phys, Sch Phys, Sydney, NSW, Australia
[13] Canberra Hlth Serv, Canberra, ACT, Australia
关键词
artificial intelligence; decision support systems; distributed learning; federated learning; radiation oncology; LUNG-CANCER; SURVIVAL PREDICTION; 2-YEAR SURVIVAL; CLINICAL-TRIALS; MODEL; RADIOTHERAPY; CONCURRENT; CARE;
D O I
10.1111/1754-9485.13287
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Introduction There is significant potential to analyse and model routinely collected data for radiotherapy patients to provide evidence to support clinical decisions, particularly where clinical trials evidence is limited or non-existent. However, in practice there are administrative, ethical, technical, logistical and legislative barriers to having coordinated data analysis platforms across radiation oncology centres. Methods A distributed learning network of computer systems is presented, with software tools to extract and report on oncology data and to enable statistical model development. A distributed or federated learning approach keeps data in the local centre, but models are developed from the entire cohort. Results The feasibility of this approach is demonstrated across six Australian oncology centres, using routinely collected lung cancer data from oncology information systems. The infrastructure was used to validate and develop machine learning for model-based clinical decision support and for one centre to assess patient eligibility criteria for two major lung cancer radiotherapy clinical trials (RTOG-9410, RTOG-0617). External validation of a 2-year overall survival model for non-small cell lung cancer (NSCLC) gave an AUC of 0.65 and C-index of 0.62 across the network. For one centre, 65% of Stage III NSCLC patients did not meet eligibility criteria for either of the two practice-changing clinical trials, and these patients had poorer survival than eligible patients (10.6 m vs. 15.8 m, P = 0.024). Conclusion Population-based studies on routine data are possible using a distributed learning approach. This has the potential for decision support models for patients for whom supporting clinical trial evidence is not applicable.
引用
收藏
页码:627 / 636
页数:10
相关论文
共 28 条
[1]   Lung cancer prognostic index: a risk score to predict overall survival after the diagnosis of non-small-cell lung cancer [J].
Alexander, Marliese ;
Wolfe, Rory ;
Ball, David ;
Conron, Matthew ;
Stirling, Robert G. ;
Solomon, Benjamin ;
MacManus, Michael ;
Officer, Ann ;
Karnam, Sameer ;
Burbury, Kate ;
Evans, Sue M. .
BRITISH JOURNAL OF CANCER, 2017, 117 (05) :744-751
[2]  
Bailey, 2015, DISTRIBUTED DATA MIN, P323
[3]   The effect of imputing missing clinical attribute values on training lung cancer survival prediction model performance [J].
Barakat M.S. ;
Field M. ;
Ghose A. ;
Stirling D. ;
Holloway L. ;
Vinod S. ;
Dekker A. ;
Thwaites D. .
Health Information Science and Systems, 5 (1)
[4]   Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study [J].
Bradley, Jeffrey D. ;
Paulus, Rebecca ;
Komaki, Ritsuko ;
Masters, Gregory ;
Blumenschein, George ;
Schild, Steven ;
Bogart, Jeffrey ;
Hu, Chen ;
Forster, Kenneth ;
Magliocco, Anthony ;
Kavadi, Vivek ;
Garces, Yolanda I. ;
Narayan, Samir ;
Iyengar, Puneeth ;
Robinson, Cliff ;
Wynn, Raymond B. ;
Koprowski, Christopher ;
Meng, Joanne ;
Beitler, Jonathan ;
Gaur, Rakesh ;
Curran, Walter, Jr. ;
Choy, Hak .
LANCET ONCOLOGY, 2015, 16 (02) :187-199
[5]   Sequential vs Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410 [J].
Curran, Walter J., Jr. ;
Paulus, Rebecca ;
Langer, Corey J. ;
Komaki, Ritsuko ;
Lee, Jin S. ;
Hauser, Stephen ;
Movsas, Benjamin ;
Wasserman, Todd ;
Rosenthal, Seth A. ;
Gore, Elizabeth ;
Machtay, Mitchell ;
Sause, William ;
Cox, James D. .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2011, 103 (19) :1452-1460
[6]   DEVELOPMENT AND EXTERNAL VALIDATION OF PROGNOSTIC MODEL FOR 2-YEAR SURVIVAL OF NON-SMALL-CELL LUNG CANCER PATIENTS TREATED WITH CHEMORADIOTHERAPY [J].
Dehing-Oberije, Cary ;
Yu, Shipeng ;
De Ruysscher, Dirk ;
Meersschout, Sabine ;
Van Beek, Karen ;
Lievens, Yolande ;
Van Meerbeeck, Jan ;
De Neve, Wilfried ;
Rao, Bharat ;
van der Weide, Hiska ;
Lambin, Philippe .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 74 (02) :355-362
[7]   Distributed learning on 20 000+lung cancer patients - The Personal Health Train [J].
Deist, Timo M. ;
Dankers, Frank J. W. M. ;
Ojha, Priyanka ;
Marshall, M. Scott ;
Janssen, Tomas ;
Faivre-Finn, Corinne ;
Masciocchi, Carlotta ;
Valentini, Vincenzo ;
Wang, Jiazhou ;
Chen, Jiayan ;
Zhang, Zhen ;
Spezi, Emiliano ;
Button, Mick ;
Nuyttens, Joost Jan ;
Vernhout, Rene ;
van Soest, Johan ;
Jochems, Arthur ;
Monshouwer, Rene ;
Bussink, Johan ;
Price, Gareth ;
Lambin, Philippe ;
Dekker, Andre .
RADIOTHERAPY AND ONCOLOGY, 2020, 144 :189-200
[8]   Rapid learning in practice: A lung cancer survival decision support system in routine patient care data [J].
Dekker, Andre ;
Vinod, Shahni ;
Holloway, Lois ;
Oberije, Cary ;
George, Armia ;
Goozee, Gary ;
Delaney, Geoff P. ;
Lambin, Philippe ;
Thwaites, David .
RADIOTHERAPY AND ONCOLOGY, 2014, 113 (01) :47-53
[9]   Application of Guideline Recommended Treatment in Routine Clinical Practice: A Population-based Study of Stage I-IIIB Non-small Cell Lung Cancer [J].
Duggan, K. J. ;
Descallar, J. ;
Vinod, S. K. .
CLINICAL ONCOLOGY, 2016, 28 (10) :639-647
[10]  
eviQ Cancer Treatments Online, 2006, RESP NONSM CELL LUNG