Large extremes of Gaussian chaos processes

被引:1
作者
Piterbarg, V. I. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Gaussian Process; DOKLADY Mathematic; Fractional Brownian Motion; Homogeneous Function; Gaussian Random Field;
D O I
10.1134/S1064562416020058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study probabilities of large extremes of Gaussian chaos processes, that is, homogeneous functions of Gaussian vector processes. Important examples are products of Gaussian processes and quadratic forms of them. Exact asymptotic behaviors of the probabilities are found. To this aim, we use joint results of E. Hashorva, D. Korshunov and the author on Gaussian chaos, as well as a substantially modified asymptotical Double Sum Method.
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [21] Extremes of Lp-norm of vector-valued Gaussian processes with trend
    Bai, Long
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (08) : 1111 - 1144
  • [22] Large deviation principle for enhanced Gaussian processes
    Friz, Peter
    Victoir, Nicolas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (06): : 775 - 785
  • [23] Polynomial chaos decomposition for the simulation of non-Gaussian nonstationary stochastic processes
    Sakamoto, S
    Ghanem, R
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2002, 128 (02): : 190 - 201
  • [24] Large deviations of infinite intersections of events in Gaussian processes
    Mandjes, Michel
    Mannersalo, Petteri
    Norros, Ilkka
    van Uitert, Miranda
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (09) : 1269 - 1293
  • [25] Laws of large numbers for supercritical branching Gaussian processes
    Kouritzin, Michael A.
    Le, Khoa
    Sezer, Deniz
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3463 - 3498
  • [26] Extremes of stationary Gaussian storage models
    Krzysztof Dębicki
    Peng Liu
    Extremes, 2016, 19 : 273 - 302
  • [27] EXTREMES OF HOMOGENEOUS GAUSSIAN RANDOM FIELDS
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Soja-Kukiela, Natalia
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (01) : 55 - 67
  • [28] Large deviations of time-averaged statistics for Gaussian processes
    Gajda, J.
    Wylomanska, A.
    Kantz, H.
    Chechkin, A. V.
    Sikora, G.
    STATISTICS & PROBABILITY LETTERS, 2018, 143 : 47 - 55
  • [29] Large deviations for sample paths of quadratic variations of Gaussian processes
    Perrin O.
    Zani M.
    Journal of Mathematical Sciences, 2006, 139 (3) : 6595 - 6602
  • [30] Large Deviation Probabilities for Square-Gaussian Stochastic Processes
    Yuri Kozachenko
    Oksana Moklyachuk
    Extremes, 1999, 2 (3) : 269 - 293