Forcing the reversibility of a mechanochemical reaction

被引:51
作者
Beedle, Amy E. M. [1 ,2 ]
Mora, Marc [1 ,2 ]
Davis, Colin T. [3 ]
Snijders, Ambrosius P. [3 ]
Stirnemann, Guillaume [4 ]
Garcia-Manyes, Sergi [1 ,2 ,5 ]
机构
[1] Kings Coll London, Dept Phys, London WC2R 2LS, England
[2] Kings Coll London, Randall Ctr Cell & Mol Biophys, London WC2R 2LS, England
[3] Francis Crick Inst, Prot Anal & Prote Sci Technol Platform, 1 Midland Rd, London NW1 1AT, England
[4] PSL Res Univ, Sorbonne Paris Cite, Univ Paris Denis Diderot, CNRS,Lab Biochim Theor,Inst Biol Physicochim, 13 Rue Pierre & Marie Curie, F-75005 Paris, France
[5] Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
DISULFIDE INTERCHANGE REACTIONS; MECHANICAL ACTIVATION; BOND REDUCTION; SINGLE; KINETICS; SPECTROSCOPY; CHEMISTRY; SUBSTITUTION; POTENTIALS; CONTINUUM;
D O I
10.1038/s41467-018-05115-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanical force modifies the free-energy surface of chemical reactions, often enabling thermodynamically unfavoured reaction pathways. Most of our molecular understanding of force-induced reactivity is restricted to the irreversible homolytic scission of covalent bonds and ring-opening in polymer mechanophores. Whether mechanical force can by-pass thermodynamically locked reactivity in heterolytic bimolecular reactions and how this impacts the reaction reversibility remains poorly understood. Using single-molecule force-clamp spectroscopy, here we show that mechanical force promotes the thermodynamically disfavored SN2 cleavage of an individual protein disulfide bond by poor nucleophilic organic thiols. Upon force removal, the transition from the resulting high-energy unstable mixed disulfide product back to the initial, low-energy disulfide bond reactant becomes suddenly spontaneous, rendering the reaction fully reversible. By rationally varying the nucleophilicity of a series of small thiols, we demonstrate how force-regulated chemical kinetics can be finely coupled with thermodynamics to predict and modulate the reversibility of bimolecular mechanochemical reactions.
引用
收藏
页数:9
相关论文
共 67 条
  • [1] Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction
    Ainavarapu, Sri Rama Koti
    Wiita, Arun P. .
    Dougan, Lorna
    Uggerud, Einar
    Fernandez, Julio M. .
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (20) : 6479 - 6487
  • [2] Experimentally realized mechanochemistry distinct from force-accelerated scission of loaded bonds
    Akbulatov, Sergey
    Tian, Yancong
    Huang, Zhen
    Kucharski, Timothy J.
    Yang, Qing-Zheng
    Boulatov, Roman
    [J]. SCIENCE, 2017, 357 (6348) : 299 - 303
  • [3] Alegre-Cebollada J, 2011, NAT CHEM, V3, P882, DOI [10.1038/NCHEM.1155, 10.1038/nchem.1155]
  • [4] ANFINSEN C, 1961, J BIOL CHEM, V236, P1361
  • [5] Mechanism of thiolate-disulfide interchange reactions in biochemistry
    Bach, Robert D.
    Dmitrenko, Olga
    Thorpe, Colin
    [J]. JOURNAL OF ORGANIC CHEMISTRY, 2008, 73 (01) : 12 - 21
  • [6] Mechanical Force Can Fine-Tune Redox Potentials of Disulfide Bonds
    Baldus, Ilona B.
    Graeter, Frauke
    [J]. BIOPHYSICAL JOURNAL, 2012, 102 (03) : 622 - 629
  • [7] DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR
    BECKE, AD
    [J]. PHYSICAL REVIEW A, 1988, 38 (06): : 3098 - 3100
  • [8] Tailoring protein nanomechanics with chemical reactivity
    Beedle, Amy E. M.
    Mora, Marc
    Lynham, Steven
    Stirnemann, Guillaume
    Garcia-Manyes, Sergi
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [9] Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding
    Beedle, Amy E. M.
    Lynham, Steven
    Garcia-Manyes, Sergi
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] The mechanochemistry of copper reports on the directionality of unfolding in model cupredoxin proteins
    Beedle, Amy E. M.
    Lezamiz, Ainhoa
    Stirnemann, Guillaume
    Garcia-Manyes, Sergi
    [J]. NATURE COMMUNICATIONS, 2015, 6