An iteratively reweighted norm algorithm for Total Variation regularization
被引:11
|
作者:
Rodriguez, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, T7 Math Modeling & Anal, POB 1663, Los Alamos, NM 87545 USALos Alamos Natl Lab, T7 Math Modeling & Anal, POB 1663, Los Alamos, NM 87545 USA
Rodriguez, Paul
[1
]
Wohlberg, Brendt
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, T7 Math Modeling & Anal, POB 1663, Los Alamos, NM 87545 USALos Alamos Natl Lab, T7 Math Modeling & Anal, POB 1663, Los Alamos, NM 87545 USA
Wohlberg, Brendt
[1
]
机构:
[1] Los Alamos Natl Lab, T7 Math Modeling & Anal, POB 1663, Los Alamos, NM 87545 USA
Total Variation (TV) regularization has become a popular method for a wide variety of image restoration problems, including denoising and deconvolution. Recently, a number of authors have noted the advantages, including superior performance with certain non-Gaussian noise, of replacing the standard l(2) data fidelity term with an l(1) norm. We propose a simple but very flexible and computationally efficient method, the Iteratively Reweighted Norm algorithm, for minimizing a generalized TV functional which includes both the l(2)-TV and and l(1)-TV problems.
机构:
Ho Chi Minh City Univ Educ, Dept Math & Informat, Ho Chi Minh City, VietnamHo Chi Minh City Univ Educ, Dept Math & Informat, Ho Chi Minh City, Vietnam
Phan, Duy Nhat
Nguyen, Thuy Ngoc
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Dynam Decis Making Lab, Pittsburgh, PA 15213 USAHo Chi Minh City Univ Educ, Dept Math & Informat, Ho Chi Minh City, Vietnam
机构:
Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
Bi, Ning
Liang, Kaihao
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
Zhongkai Univ Agr & Engn, Coll Computat Sci, Guangzhou, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China