Electrochemical performances of electric double layer capacitor with UV-cured gel polymer electrolyte based on poly[(ethylene glycol)diacrylate]-poly(vinylidene fluoride) blend

被引:27
|
作者
Yang, CM [1 ]
Ju, JB
Lee, JK
Cho, WI
Cho, BW
机构
[1] Korea Inst Sci & Technol, Eco Nano Res Ctr, Seoul 130650, South Korea
[2] Hongik Univ, Dept Chem Engn, Seoul 131791, South Korea
关键词
electric double layer capacitor; gel polymer electrolyte; UV-cured polymer blend; poly[(ethylene glycol)diacrylatel; poly(vinylidene fluoride);
D O I
10.1016/j.electacta.2004.08.033
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Poly[(ethylene glycol)diacrylate]-poly(vinylidene fluoride), a get polymer blend with ethylene carbonate: dimethyl carbonate: ethyl methyl carbonate (EC:DMC:EMC, 1:1:1 volume ratio) and containing 1.0 M of lithium hexafluoro phosphate (LiPF6) as liquid components, is employed as a gel polymer electrolyte for an electric double layer capacitor (EDLC). Its electrochemical characteristics is compared with that of liquid organic electrolyte mixture of ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate in a 1:1:1 volume ratio containing 1.0 M LiPF6 salt. The specific surface area of the activated carbon powder as an active material is 1908 m(2)/g. Liquid poly [(ethylene glycol)diacrylate] (PEGDA) oligomer with a high retention capability of liquid electrolytes is cured by UV irradiation and poly(vinylidene fluoride)-hexafluoropropylene (PVdF-HFP) copolymer with a porous structure endows polymer matrix with high mechanical strength. The specific capacitance of EDLC using the gel polymer electrolyte (GPE-EDLC) shows 120F/g, which is better than the liquid organic electrolyte. Good cycling efficiency is observed for a GPE-EDLC with high retention capability of liquid components. The high specific capacitance and good cycling efficiency are most likely due to the polarization resistance of EDLC with the gel polymer electrolyte, which is lower than the liquid organic electrolyte. This may result from the distinguished adhesion between the activated carbon electrode and the gel polymer electrolyte, as well as high retention capability of liquid components. Power densities of GPE-EDLC and LOE-EDLC shows 1.88 kW/kg and 1.21 kW/kg, respectively. However, the energy densities are low in both electrolytes. T he GPE-EDLC exhibits rectangular cyclic voltammogram similar to an ideal EDLC within operating voltage range of 0 V-2.5 V. It should be noted that a region of electric double layer means a wide voltage and a rapid formation. Redox currents of both EDLCs are not observed in the sweep region and the cyclic voltammograms are unchanged on repeated runs. The observed leakage current shows 49 muA after 720 s at a constant voltage of 2.5 V, due to the high ionic conductivity of 1.5 x 10(-3) S cm(-1) during storage time. Swelling and well-developed pore structures of the GPE blend films allow ions and solvents to move easily. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1813 / 1819
页数:7
相关论文
共 35 条
  • [31] Effect of poly (ethylene glycol) gel polymer electrolyte consist of novel heteroleptic cobalt redox shuttle and pyridine based organic additive on performance of dye sensitized solar cells
    Balamurugan, Selvaraj
    Ganesan, Shanmugam
    Kamaraj, Santhosh
    Mathew, Vinod
    Kim, Jaekook
    Arumugam, Natarajan
    Almansour, Abdulrahman I.
    OPTICAL MATERIALS, 2022, 125
  • [32] Improved performance of lithium ion battery by the incorporation of novel synthesized organic-inorganic hybrid nanoparticles SiO2-poly(methyl methacrylate-co-ureidopyrimidinone) in gel polymer electrolyte based on poly (vinylidene fluoride)
    Jamalpour, Seifollah
    Ghahramani, Maral
    Ghaffarian, Seyed Reza
    Javanbakht, Mehran
    POLYMER, 2021, 228
  • [33] Electrochemical characterization of poly(vinylidene fluoride-co-hexafluoro propylene) based electrospun gel polymer electrolytes incorporating moth temperature ionic liquids as green electrolytes for lithium batteries
    Raghavan, Prasanth
    Zhao, Xiaohui
    Choi, Hyunji
    Lim, Du-Hyun
    Kim, Jae-Kwang
    Matic, Aleksandar
    Jacobsson, Per
    Nah, Changwoon
    Ahn, Jou-Hyeon
    SOLID STATE IONICS, 2014, 262 : 77 - 82
  • [34] Composite Gel Polymer Electrolyte Based on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with Modified Aluminum Doped Lithium Lanthanum Titanate (A-LLTO) for High-Performance Lithium Rechargeable Batteries
    Le, Hang T. T.
    Duc Tung Ngo
    Kalubarme, Ramchandra S.
    Cao, Guozhong
    Park, Choong-Nyeon
    Park, Chan-Jin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (32) : 20710 - 20719
  • [35] Novel poly(vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based gel polymer electrolyte containing fumed silica (SiO2) nanofiller for high performance dye-sensitized solar cell
    Zebardastan, Negar
    Khanmirzaei, M. H.
    Ramesh, S.
    Ramesh, K.
    ELECTROCHIMICA ACTA, 2016, 220 : 573 - 580