Superionic Conduction in One-Dimensional Nanostructures

被引:7
作者
Cho, Ki-Hyun [1 ]
Jain, Prashant K. [2 ,3 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem, Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
solid electrolyte; nanowire; nanocrystal; ion transport; phase transition; HIGH THERMOELECTRIC PERFORMANCE; SOLID-STATE IONICS; ELECTRICAL-CONDUCTIVITY; ROOM-TEMPERATURE; LIQUID; PHASE; CU2SE; NANOIONICS; IMPEDANCE; TRANSPORT;
D O I
10.1021/acsnano.2c03732
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructuring has become a powerful tool for tuning the electronic properties of materials and enhancing transport. As an example of relevance to next-generation battery technologies, nanocrystals have shown promise for realizing fast-ion conduction in solids; however, dissipationless ion transport over extended length scales is hindered by lossy interfaces formed between nanocrystals in a solid. Here we address this challenge by exploiting one-dimensional nanostructures for ion transport. Superionic conduction, with a record-high ionic conductivity of similar to 4 S/cm at 150 degrees C, is demonstrated in solid electrolytes fabricated from nanowires of the earth-abundant solid copper selenide. This quasi-one-dimensional ionic conductivity is similar to 5x higher than that in bulk cuprous selenide. Nanoscale dimensions in the radial direction lower ion-hopping barriers, while mesoscopically long, interface-free transport paths are available for ion transport in the axial direction. One-dimensional nanostructures can exceptionally boost solid-state devices that rely on ion transport.
引用
收藏
页码:12445 / 12451
页数:7
相关论文
共 48 条
[1]   IMPEDANCE OF SILVER-SOLID ELECTROLYTE INTERPHASE [J].
ARMSTRONG, RD ;
WHITFIELD, R ;
DICKINSON, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1972, 39 (02) :257-+
[2]   Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping [J].
Bailey, Trevor P. ;
Hui, Si ;
Xie, Hongyao ;
Olvera, Alan ;
Poudeu, Pierre F. P. ;
Tang, Xinfeng ;
Uher, Ctirad .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) :17225-17235
[3]   IONIC CONDUCTANCE OF SILVER SULFIDE AND DIFFUSION MECHANISM OF SILVER IONS IN ALPHA-AG2S [J].
BARTKOWICZ, I ;
MROWEC, S .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1972, 49 (01) :101-+
[4]   ELECTRICAL-CONDUCTIVITY OF KCU4I5 [J].
BONINO, F ;
LAZZARI, M .
JOURNAL OF POWER SOURCES, 1976, 1 (01) :103-106
[5]   Discovery of colossal Seebeck effect in metallic Cu2Se [J].
Byeon, Dogyun ;
Sobota, Robert ;
Delime-Codrin, Kevin ;
Choi, Seongho ;
Hirata, Keisuke ;
Adachi, Masahiro ;
Kiyama, Makoto ;
Matsuura, Takashi ;
Yamamoto, Yoshiyuki ;
Matsunami, Masaharu ;
Takeuchi, Tsunehiro .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Nanotechnology - Solid progress in ion conduction [J].
Chadwick, AV .
NATURE, 2000, 408 (6815) :925-926
[7]   One-Dimensional Cuprous Selenide Nanostructures with Switchable Plasmonic and Super-ionic Phase Attributes [J].
Cho, Ki-Hyun ;
Heo, Jaeyoung ;
Sung, Yun-Mo ;
Jain, Prashant K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (25) :8410-8415
[8]   Exploiting the colloidal nanocrystal library to construct electronic devices [J].
Choi, Ji-Hyuk ;
Wang, Han ;
Oh, Soong Ju ;
Paik, Taejong ;
Jo, Pil Sung ;
Sung, Jinwoo ;
Ye, Xingchen ;
Zhao, Tianshuo ;
Diroll, Benjamin T. ;
Murray, Christopher B. ;
Kagan, Cherie R. .
SCIENCE, 2016, 352 (6282) :205-208
[9]   Impedance Study on Estimating Electrochemical Mechanisms in a Polymer Electrolyte Fuel Cell During Gradual Water Accumulation [J].
Cruz-Manzo, S. ;
Cano-Castillo, U. ;
Greenwood, P. .
FUEL CELLS, 2019, 19 (01) :71-83
[10]   Nanoionics of advanced superionic conductors [J].
Despotuli, AL ;
Andreeva, AV ;
Rambabu, B .
IONICS, 2005, 11 (3-4) :306-314