Dependence of Geometric and Spectroscopic Properties of Double-walled Boron Nitride Nanotubes on Interwall Distance

被引:4
作者
Aydin, Metin [1 ]
机构
[1] Ondokuz Mayis Univ, Fac Art & Sci, Dept Chem, TR-55139 Kurupelit, Samsun, Turkey
关键词
BNNT; DWBNNT; Formation Energy; Interwall Distance; Charge Transfer; Raman and IR Spectroscopy; DFT; CARBON NANOTUBES; FUNCTIONALIZATION; COMPOSITES; DISPERSION; SPECTRA;
D O I
10.5772/59402
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have used density functional theory (DFT) and time dependent (TD)-DFT to systematically investigate the dependency of the geometric and vibro-electronic properties of zigzag and armchair-type double-walled boron nitride nanotubes ((0, m)@(0, n) and (m, m)@(n, n)-DWBNNTs) on the interwall distance (Delta R) and the number of unit cells. The results of the calculations showed that their structural stability strongly depends on the interwall distance, but not on the number of unit cells, and the (0, m) @(0, m+9/10) and (m, m) @(n, n) with n= m+5/6 are the most energetically stable structures. The predicted electronic structures for DWBNNTs with cell lengths of one unit exhibit a strong red-shift for the Delta R below similar to 0.4 nm and remain almost constant for the Delta R > 0.45 nm. The calculated nonresonance Raman spectra of (0,6) @(0, n)-DWBNNTs (with cell lengths of one unit and n= 12-18) indicated that the radial breathing modes (RBMs) of inner (0,6) and outer (0, n) tubes are not only diameter dependent, but also exhibit a strong blue-shift for the Delta R below similar to 0.35 nm and rapidly approach zero with increasing Delta R reference to the position of the RBM in the spectrum of the corresponding single wall boron nitride nanotubes, (0, n)-SWBNNTs. The calculated IR spectra of the (0,6) @(0, n)-DWBNNTs did not indicate any significant dependence on the Delta R for n > 13.
引用
收藏
页数:12
相关论文
共 54 条
[31]   Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge [J].
Loiseau, A ;
Willaime, F ;
Demoncy, N ;
Hug, G ;
Pascard, H .
PHYSICAL REVIEW LETTERS, 1996, 76 (25) :4737-4740
[32]   In-fiber microchannel device filled with a carbon nanotube dispersion for passive mode-lock lasing [J].
Martinez, Amos ;
Zhou, Kaiming ;
Bennion, Ian ;
Yamashita, Shinji .
OPTICS EXPRESS, 2008, 16 (20) :15425-15430
[33]   Fabrication of Carbon nanotube-poly-methyl-methacrylate composites for nonlinear photonic devices [J].
Martinez, Amos ;
Uchida, Sho ;
Song, Yong-Won ;
Ishigure, Takaaki ;
Yamashita, Shinji .
OPTICS EXPRESS, 2008, 16 (15) :11337-11343
[34]   THE INTERMOLECULAR POTENTIALS FOR SOME SIMPLE NONPOLAR MOLECULES [J].
MASON, EA ;
RICE, WE .
JOURNAL OF CHEMICAL PHYSICS, 1954, 22 (05) :843-851
[35]   Excitons in carbon nanotubes [J].
Maultzsch, J. ;
Pomraenke, R. ;
Reich, S. ;
Chang, E. ;
Prezzi, D. ;
Ruini, A. ;
Molinari, E. ;
Strano, M. S. ;
Thomsen, C. ;
Lienau, C. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13) :3204-3208
[36]   Electric polarization of heteropolar nanotubes as a geometric phase -: art. no. 056803 [J].
Mele, EJ ;
Král, P .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :568031-568034
[37]   The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory [J].
Michalska, D ;
Wysokinski, R .
CHEMICAL PHYSICS LETTERS, 2005, 403 (1-3) :211-217
[38]  
Nemeth C, 2009, TRACESYN VERSION 1 0, P556
[39]   Supramolecular conjugates of carbon nanotubes and DNA by a solid-state reaction [J].
Nepal, D ;
Sohn, JI ;
Aicher, WK ;
Lee, S ;
Geckeler, KE .
BIOMACROMOLECULES, 2005, 6 (06) :2919-2922
[40]   Band gap fluorescence from individual single-walled carbon nanotubes [J].
O'Connell, MJ ;
Bachilo, SM ;
Huffman, CB ;
Moore, VC ;
Strano, MS ;
Haroz, EH ;
Rialon, KL ;
Boul, PJ ;
Noon, WH ;
Kittrell, C ;
Ma, JP ;
Hauge, RH ;
Weisman, RB ;
Smalley, RE .
SCIENCE, 2002, 297 (5581) :593-596