Prograde vortices, internal shear layers and the Taylor microscale in high-Reynolds-number turbulent boundary layers

被引:15
作者
Heisel, Michael [1 ,2 ]
de Silva, Charitha M. [3 ]
Hutchins, Nicholas [4 ]
Marusic, Ivan [4 ]
Guala, Michele [1 ,2 ]
机构
[1] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[2] Univ Minnesota, Dept Civil Environm & Geo Engn, Minneapolis, MN 55455 USA
[3] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[4] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
boundary layer structure; turbulent boundary layers; UNIFORM-MOMENTUM ZONES; COHERENT STRUCTURES; LOGARITHMIC REGION; STATISTICAL STRUCTURE; INTERFACIAL LAYERS; SCALE MOTIONS; VELOCITY; EDDIES; EVOLUTION; DYNAMICS;
D O I
10.1017/jfm.2021.478
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The statistical properties of prograde spanwise vortex cores and internal shear layers (ISLs) are evaluated for a series of high-Reynolds-number turbulent boundary layers. The considered flows span a wide range of both Reynolds number and surface roughness. In each case, the largest spanwise vortex cores in the outer layer of the boundary layer have size comparable to the Taylor microscale lambda(T), and the azimuthal velocity of these large vortex cores is governed by the friction velocity u(tau). The same scaling parameters describe the average thickness and velocity difference across the ISLs. The results demonstrate the importance of the local large-eddy turnover time in determining the strain rate confining the size of the vortex cores and shear layers. The relevance of the turnover time, and more generally the Taylor microscale, can be explained by a stretching mechanism involving the mutual interaction of coherent velocity structures such as uniform momentum zones with the evolving shear layers separating the structures.
引用
收藏
页数:32
相关论文
共 91 条
[71]  
Pope S.B., 2000, TURBUL FLOWS
[72]   Statistical structure of turbulent-boundarylayer velocity-vorticity products at high and low Reynolds numbers [J].
Priyadarshana, P. J. A. ;
Klewicki, J. C. ;
Treat, S. ;
Foss, J. F. .
JOURNAL OF FLUID MECHANICS, 2007, 570 (307-346) :307-346
[73]  
Reynolds O., 1883, PHILOS T R SOC LON A, V174, P935, DOI DOI 10.1098/RSTL.1883.0029
[74]   LOCAL ISOTROPY IN TURBULENT BOUNDARY-LAYERS AT HIGH REYNOLDS-NUMBER [J].
SADDOUGHI, SG ;
VEERAVALLI, SV .
JOURNAL OF FLUID MECHANICS, 1994, 268 :333-372
[75]  
Saffman P. G., 1968, Topics in Nonlinear Physics, P485, DOI DOI 10.1007/978-3-642-88504-4_6
[76]   Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows [J].
Saxton-Fox, Theresa ;
McKeon, Beverley J. .
JOURNAL OF FLUID MECHANICS, 2017, 826
[77]   UNIVERSAL SCALING LAWS IN FULLY-DEVELOPED TURBULENCE [J].
SHE, ZS ;
LEVEQUE, E .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :336-339
[78]   INTERMITTENT VORTEX STRUCTURES IN HOMOGENEOUS ISOTROPIC TURBULENCE [J].
SHE, ZS ;
JACKSON, E ;
ORSZAG, SA .
NATURE, 1990, 344 (6263) :226-228
[79]   One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to δ+ ≈ 2000 [J].
Sillero, Juan A. ;
Jimenez, Javier ;
Moser, Robert D. .
PHYSICS OF FLUIDS, 2013, 25 (10)
[80]   High-Reynolds Number Wall Turbulence [J].
Smits, Alexander J. ;
McKeon, Beverley J. ;
Marusic, Ivan .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 43, 2011, 43 :353-375