Prograde vortices, internal shear layers and the Taylor microscale in high-Reynolds-number turbulent boundary layers

被引:13
作者
Heisel, Michael [1 ,2 ]
de Silva, Charitha M. [3 ]
Hutchins, Nicholas [4 ]
Marusic, Ivan [4 ]
Guala, Michele [1 ,2 ]
机构
[1] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[2] Univ Minnesota, Dept Civil Environm & Geo Engn, Minneapolis, MN 55455 USA
[3] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[4] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
boundary layer structure; turbulent boundary layers; UNIFORM-MOMENTUM ZONES; COHERENT STRUCTURES; LOGARITHMIC REGION; STATISTICAL STRUCTURE; INTERFACIAL LAYERS; SCALE MOTIONS; VELOCITY; EDDIES; EVOLUTION; DYNAMICS;
D O I
10.1017/jfm.2021.478
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The statistical properties of prograde spanwise vortex cores and internal shear layers (ISLs) are evaluated for a series of high-Reynolds-number turbulent boundary layers. The considered flows span a wide range of both Reynolds number and surface roughness. In each case, the largest spanwise vortex cores in the outer layer of the boundary layer have size comparable to the Taylor microscale lambda(T), and the azimuthal velocity of these large vortex cores is governed by the friction velocity u(tau). The same scaling parameters describe the average thickness and velocity difference across the ISLs. The results demonstrate the importance of the local large-eddy turnover time in determining the strain rate confining the size of the vortex cores and shear layers. The relevance of the turnover time, and more generally the Taylor microscale, can be explained by a stretching mechanism involving the mutual interaction of coherent velocity structures such as uniform momentum zones with the evolving shear layers separating the structures.
引用
收藏
页数:32
相关论文
共 91 条
  • [1] Analysis and interpretation of instantaneous turbulent velocity fields
    Adrian, RJ
    Christensen, KT
    Liu, ZC
    [J]. EXPERIMENTS IN FLUIDS, 2000, 29 (03) : 275 - 290
  • [2] Vortex organization in the outer region of the turbulent boundary layer
    Adrian, RJ
    Meinhart, CD
    Tomkins, CD
    [J]. JOURNAL OF FLUID MECHANICS, 2000, 422 : 1 - 54
  • [3] Spectral analysis of near-wall turbulence in channel flow at Reτ=4200 with emphasis on the attached-eddy hypothesis
    Agostini, Lionel
    Leschziner, Michael
    [J]. PHYSICAL REVIEW FLUIDS, 2017, 2 (01):
  • [4] [Anonymous], 1976, STRUCTURE TURBULENT
  • [5] [Anonymous], 2015, TURBULENCE INTRO SCI, DOI DOI 10.1093/ACPROF:OSO/9780198722588.001.0001
  • [6] [Anonymous], 1968, Topics in Nonlinear Physics, DOI DOI 10.1007/978-3-642-88504-4_6
  • [7] Bisset DK, 2002, J FLUID MECH, V451, P383, DOI [10.1017/10.1017/S0022112001006759, 10.1017/S0022112001006759]
  • [8] DENSITY EFFECTS AND LARGE STRUCTURE IN TURBULENT MIXING LAYERS
    BROWN, GL
    ROSHKO, A
    [J]. JOURNAL OF FLUID MECHANICS, 1974, 64 (JUL24) : 775 - &
  • [9] Burgers J.M., 1948, Adv. Appl. Mech., V1, P171, DOI 10.1016/S0065-2156(08)70100-5
  • [10] Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry
    Carlier, J
    Stanislas, M
    [J]. JOURNAL OF FLUID MECHANICS, 2005, 535 : 143 - 188