Decoherence in a one-dimensional quantum walk

被引:44
作者
Annabestani, Mostafa [1 ]
Akhtarshenas, Seyed Javad [2 ,3 ]
Abolhassani, Mohamad Reza [1 ]
机构
[1] Tarbiat Modares Univ, Basic Sci Fac, Dept Phys, Tehran, Iran
[2] Univ Isfahan, Dept Phys, Esfahan, Iran
[3] Univ Isfahan, Quant Lab Grp, Esfahan, Iran
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 03期
关键词
D O I
10.1103/PhysRevA.81.032321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this article we study decoherence in the discrete-time quantum walk on the line. We generalize the method of decoherent coin quantum walk, introduced by Brun et al. [Phys. Rev. A 67, 32304 (2003)]. Our analytical expressions are applicable for all kinds of decoherence. As an example of the coin-position decoherence, we study the broken line quantum walk and compare our results with the numerical one. We also show that our analytical results reduce to the Brun formalism when only the coin is subjected to decoherence.
引用
收藏
页数:9
相关论文
共 45 条
[1]   Quantum walk on the line: Entanglement and nonlocal initial conditions [J].
Abal, G ;
Siri, R ;
Romanelli, A ;
Donangelo, R .
PHYSICAL REVIEW A, 2006, 73 (04) :1-9
[2]   Non-uniform mixing of quantum walk on cycles [J].
Adamczak, William ;
Andrew, Kevin ;
Bergen, Leon ;
Ethier, Dillon ;
Hernberg, Peter ;
Lin, Jennifer ;
Tamon, Christino .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2007, 5 (06) :781-793
[3]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[4]  
Ambainis A., 2004, SIGACT News, V35, P22, DOI 10.1145/992287.992296
[5]   Quantum walk algorithm for element distinctness [J].
Ambainis, Andris .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :210-239
[6]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[7]   Asymptotic entanglement in 2D quantum walks [J].
Annabestani, M. ;
Abolhasani, M. R. ;
Abal, G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (07)
[8]  
[Anonymous], LNCS
[9]  
Bednarska M, 2003, PHYS LETT A, V317, P21, DOI 10.1016/j.physieta.2003.08.023
[10]   Quantum to classical transition for random walks [J].
Brun, TA ;
Carteret, HA ;
Ambainis, A .
PHYSICAL REVIEW LETTERS, 2003, 91 (13) :130602-130602