DETERMINATION OF GAIT PARAMETERS FROM THE WEARABLE MOTION ANALYSIS SYSTEM eSHOE

被引:1
|
作者
Jagos, H. [1 ]
Reich, S. [2 ]
Rattay, F. [4 ]
Mehnen, L. [2 ]
Pils, K. [3 ]
Wassermann, C. [3 ]
Chhatwal, C. [3 ]
Reichel, M. [2 ]
机构
[1] CEIT Raltec, Schwechat, Austria
[2] Univ Appl Sci Tech Wien, Vienna, Austria
[3] Sozialmed Zentrum Sophienspital, Vienna, Austria
[4] Vienna Univ Technol, Vienna, Austria
来源
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK | 2013年 / 58卷
关键词
gait analysis; geriatric assessment; cross-correlation; pattern recognition; feature extraction;
D O I
10.1515/bmt-2013-4241
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Limitation of mobility often leads to considerable loss in quality of life. The mobile motion analysis system eSHOE represents a new method for the detection of gait parameters, in order to enable monitoring of the rehabilitation processes. The system has been tested in a pilot study at a geriatric hospital in Vienna. Autocorrelation and cross-correlation analyses proved to be suitable methods for the extraction of gait parameters from eSHOE data. Based on the results a method for gait symmetry determination will be developed as a next step.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] GaitWEAR: An Augmented Wearable System for Gait Quantification
    Raghuvanshi, Ankita
    Mitra, Paromita
    Rane, Dharma
    Kumar, Suhagiya Dharmik
    Lahiri, Uttama
    IEEE SENSORS JOURNAL, 2024, 24 (21) : 35673 - 35685
  • [22] A Wearable Wireless System for Gait Analysis for Early Diagnosis of Alzheimer and Parkinson Disease
    Margiotta, N.
    Avitabile, G.
    Coviello, G.
    2016 5TH INTERNATIONAL CONFERENCE ON ELECTRONIC DEVICES, SYSTEMS AND APPLICATIONS (ICEDSA), 2016,
  • [23] A Novel Wearable Foot and Ankle Monitoring System for the Assessment of Gait Biomechanics
    Farago, Paul
    Grama, Lacrimioara
    Farago, Monica-Adriana
    Hintea, Sorin
    APPLIED SCIENCES-BASEL, 2021, 11 (01): : 1 - 29
  • [24] Wearable sensors for gait analysis Comparison between a MIMUs system and a gold standard electromechanical system
    Agostini, V.
    Knaflitz, M.
    Antenucci, L.
    Lisco, G.
    Gastaldi, L.
    Tadano, S.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA) PROCEEDINGS, 2015, : 146 - 150
  • [25] Wearable Devices for Gait Analysis in Intelligent Healthcare
    Liu, Xin
    Zhao, Chen
    Zheng, Bin
    Guo, Qinwei
    Duan, Xiaoqin
    Wulamu, Aziguli
    Zhang, Dezheng
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [26] Recent Advances in Quantitative Gait Analysis Using Wearable Sensors: A Review
    Hutabarat, Yonatan
    Owaki, Dai
    Hayashibe, Mitsuhiro
    IEEE SENSORS JOURNAL, 2021, 21 (23) : 26470 - 26487
  • [27] A dataset for wearable sensors validation in gait analysis
    Pierleoni, Paola
    Pinti, Federica
    Belli, Alberto
    Palma, Lorenzo
    DATA IN BRIEF, 2020, 31
  • [28] Agreement between Optoelectronic System and Wearable Sensors for the Evaluation of Gait Spatiotemporal Parameters in Progressive Supranuclear Palsy
    Ricciardi, Carlo
    Pisani, Noemi
    Donisi, Leandro
    Abate, Filomena
    Amboni, Marianna
    Barone, Paolo
    Picillo, Marina
    Cesarelli, Mario
    Amato, Francesco
    SENSORS, 2023, 23 (24)
  • [29] Simultaneous validation of wearable motion capture system for lower body applications: over single plane range of motion (ROM) and gait activities
    Mihcin, Senay
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2022, 67 (03): : 185 - 199
  • [30] Identification of Gait Motion Patterns Using Wearable Inertial Sensor Network
    Moon, Kee S.
    Lee, Sung Q.
    Ozturk, Yusuf
    Gaidhani, Apoorva
    Cox, Jeremiah A.
    SENSORS, 2019, 19 (22)