Kolmogorov widths of weighted Sobolev classes on a multi-dimensional domain with conditions on the derivatives of order r and zero

被引:4
|
作者
Vasil'eva, A. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Kolmogorov widths; Weighted Sobolev classes; Function class intersections; APPROXIMATION NUMBERS; EMBEDDING THEOREM; IMBEDDING THEOREMS; NORM INEQUALITIES; SPACES; ENTROPY; COMPACTNESS; OPERATORS; DISTANCE; SETS;
D O I
10.1016/j.jat.2021.105602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper order estimates of the Kolmogorov widths for some weighted Sobolev classes in a weighted Lebesgue space are obtained. The weighted Sobolev classes are defined by a restriction on the weighted L-p1-norm of the highest order derivative and the weighted L-p0-norm of the function. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:34
相关论文
共 15 条