Leveraging eQTLs to identify individual-level tissue of interest for a complex trait

被引:3
作者
Majumdar, Arunabha [1 ,2 ]
Giambartolomei, Claudia [1 ]
Cai, Na [3 ,4 ]
Haldar, Tanushree [5 ]
Schwarz, Tommer [6 ]
Gandal, Michael [7 ]
Flint, Jonathan [8 ]
Pasaniuc, Bogdan [1 ,6 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[2] Indian Inst Technol Hyderabad, Dept Math, Kandi, Telangana, India
[3] Wellcome Sanger Inst, Wellcome Genome Campus, Hinxton, England
[4] European Bioinformat Inst EMBL EBI, Wellcome Genome Campus, Hinxton, England
[5] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA
[6] Univ Calif Los Angeles, Bioinformat Interdept Program, Los Angeles, CA USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Semel Inst, Program Neurobehav Genet, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Psychiat & Biobehav Sci, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
BODY-MASS INDEX; ADIPOSE-TISSUE; SUBTYPES; RISK; ASSOCIATION; VARIANTS; DISEASE; HETEROGENEITY; LOCI;
D O I
10.1371/journal.pcbi.1008915
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Genetic predisposition for complex traits often acts through multiple tissues at different time points during development. As a simple example, the genetic predisposition for obesity could be manifested either through inherited variants that control metabolism through regulation of genes expressed in the brain, or that control fat storage through dysregulation of genes expressed in adipose tissue, or both. Here we describe a statistical approach that leverages tissue-specific expression quantitative trait loci (eQTLs) corresponding to tissue-specific genes to prioritize a relevant tissue underlying the genetic predisposition of a given individual for a complex trait. Unlike existing approaches that prioritize relevant tissues for the trait in the population, our approach probabilistically quantifies the tissue-wise genetic contribution to the trait for a given individual. We hypothesize that for a subgroup of individuals the genetic contribution to the trait can be mediated primarily through a specific tissue. Through simulations using the UK Biobank, we show that our approach can predict the relevant tissue accurately and can cluster individuals according to their tissue-specific genetic architecture. We analyze body mass index (BMI) and waist to hip ratio adjusted for BMI (WHRadjBMI) in the UK Biobank to identify subgroups of individuals whose genetic predisposition act primarily through brain versus adipose tissue, and adipose versus muscle tissue, respectively. Notably, we find that these individuals have specific phenotypic features beyond BMI and WHRadjBMI that distinguish them from random individuals in the data, suggesting biological effects of tissue-specific genetic contribution for these traits. Author summary A significant component of the genetic susceptibility to complex traits is mediated through genetic control of gene expression in one or multiple tissues. Several studies have highlighted the relevance of tissue specific biological mechanisms underlying the pathogenesis of complex traits, and have often identified multiple tissues relevant to a given phenotype in the population. Since existing methods only prioritize tissues for a complex phenotype in the population, it remains an open question whether certain classes of individuals have their genetic predisposition for the phenotype mediated primarily through a specific tissue. We present an efficient statistical approach that integrates tissue-specific eQTLs (i.e., eQTLs for tissue-specific genes) with genetic association data for a complex trait to probabilistically quantify the tissue-wise genetic contribution to the phenotype of each individual in the study. Using simulations we show that the proposed approach accurately infers the simulated tissue of interest for each individual. Integrating expression data from the GTEx consortium, we apply the proposed approach to two obesity related phenotypes in the UK Biobank. Our approach identified subgroups of individuals with their genetic susceptibility to the phenotype mediated in a tissue-specific manner. Interestingly, multiple metabolic traits, neuropsychiatric traits, and other traits were found to be differentially distributed between the tissue-specific groups of individuals and the remaining population, suggesting a biologically meaningful interpretation for these subgroups of individuals. We provide an R-package 'eGST' for general use of the method: https://cran.r-project.org/web/packages/eGST/index.html.
引用
收藏
页数:33
相关论文
共 46 条
  • [11] Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types
    Finucane, Hilary K.
    Reshef, Yakir A.
    Anttila, Verneri
    Slowikowski, Kamil
    Gusev, Alexander
    Byrnes, Andrea
    Gazal, Steven
    Loh, Po-Ru
    Lareau, Caleb
    Shoresh, Noam
    Genovese, Giulio
    Saunders, Arpiar
    Macosko, Evan
    Pollack, Samuela
    Perry, John R. B.
    Buenrostro, Jason D.
    Bernstein, Bradley E.
    Raychaudhuri, Soumya
    McCarroll, Steven
    Neale, Benjamin M.
    Price, Alkes L.
    [J]. NATURE GENETICS, 2018, 50 (04) : 621 - +
  • [12] A gene-based association method for mapping traits using reference transcriptome data
    Gamazon, Eric R.
    Wheeler, Heather E.
    Shah, Kaanan P.
    Mozaffari, Sahar V.
    Aquino-Michaels, Keston
    Carroll, Robert J.
    Eyler, Anne E.
    Denny, Joshua C.
    Nicolae, Dan L.
    Cox, Nancy J.
    Im, Hae Kyung
    [J]. NATURE GENETICS, 2015, 47 (09) : 1091 - +
  • [13] Genome-wide association studies identify four ER negative-specific breast cancer risk loci
    Garcia-Closas, Montserrat
    Couch, Fergus J.
    Lindstrom, Sara
    Michailidouo, Kyriaki
    Schmidt, Marjanka K.
    Brook, Mark N.
    Orr, Nick
    Rhie, Suhn Kyong
    Riboli, Elio
    Feigelson, Heather S.
    Le Marchand, Loic
    Buring, Julie E.
    Eccles, Diana
    Miron, Penelope
    Fasching, Peter A.
    Brauch, Hiltrud
    Chang-Claude, Jenny
    Carpenter, Jane
    Godwin, Andrew K.
    Nevanlinna, Heli
    Giles, Graham G.
    Cox, Angela
    Hopper, John L.
    Bolla, Manjeet K.
    Wang, Qin
    Dennis, Joe
    Dicks, Ed
    Howat, Will J.
    Schoof, Nils
    Bojesen, Stig E.
    Lambrechts, Diether
    Broeks, Annegien
    Andrulis, Irene L.
    Guenel, Pascal
    Burwinkel, Barbara
    Sawyer, Elinor J.
    Hollestelle, Antoinette
    Fletcher, Olivia
    Winqvist, Robert
    Brenner, Hermann
    Mannermaa, Arto
    Hamann, Ute
    Meindl, Alfons
    Lindblom, Annika
    Zheng, Wei
    Devillee, Peter
    Goldberg, Mark S.
    Lubinski, Jan
    Kristensen, Vessela
    Swerdlow, Anthony
    [J]. NATURE GENETICS, 2013, 45 (04) : 392 - 398
  • [14] Subtypes of medulloblastoma have distinct developmental origins
    Gibson, Paul
    Tong, Yiai
    Robinson, Giles
    Thompson, Margaret C.
    Currle, D. Spencer
    Eden, Christopher
    Kranenburg, Tanya A.
    Hogg, Twala
    Poppleton, Helen
    Martin, Julie
    Finkelstein, David
    Pounds, Stanley
    Weiss, Aaron
    Patay, Zoltan
    Scoggins, Matthew
    Ogg, Robert
    Pei, Yanxin
    Yang, Zeng-Jie
    Brun, Sonja
    Lee, Youngsoo
    Zindy, Frederique
    Lindsey, Janet C.
    Taketo, Makoto M.
    Boop, Frederick A.
    Sanford, Robert A.
    Gajjar, Amar
    Clifford, Steven C.
    Roussel, Martine F.
    McKinnon, Peter J.
    Gutmann, David H.
    Ellison, David W.
    Wechsler-Reya, Robert
    Gilbertson, Richard J.
    [J]. NATURE, 2010, 468 (7327) : 1095 - 1099
  • [15] Gupta M.R., 2011, THEORY USE ALGORITHM
  • [16] Integrative approaches for large-scale transcriptome-wide association studies
    Gusev, Alexander
    Ko, Arthur
    Shi, Huwenbo
    Bhatia, Gaurav
    Chung, Wonil
    Penninx, Brenda W. J. H.
    Jansen, Rick
    de Geus, Eco J. C.
    Boomsma, Dorret I.
    Wright, Fred A.
    Sullivan, Patrick F.
    Nikkola, Elina
    Alvarez, Marcus
    Civelek, Mete
    Lusis, Aldons J.
    Lehtimaki, Terho
    Raitoharju, Emma
    Kahonen, Mika
    Seppala, Ilkka
    Raitakari, Olli T.
    Kuusisto, Johanna
    Laakso, Markku
    Price, Alkes L.
    Pajukanta, Paivi
    Pasaniuc, Bogdan
    [J]. NATURE GENETICS, 2016, 48 (03) : 245 - 252
  • [17] Gene expression profiles indicate tissue-specific obesity regulation changes and strong obesity relevant tissues
    Hao, R-H
    Yang, T-L
    Rong, Y.
    Yao, S.
    Dong, S-S
    Chen, H.
    Guo, Y.
    [J]. INTERNATIONAL JOURNAL OF OBESITY, 2018, 42 (03) : 363 - 369
  • [18] Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits
    Hormozdiari, Farhad
    Gazal, Steven
    van de Geijn, Bryce
    Finucane, Hilary K.
    Ju, Chelsea J. -T.
    Loh, Po-Ru
    Schoech, Armin
    Reshef, Yakir
    Liu, Xuanyao
    O'Connor, Luke
    Gusev, Alexander
    Eskin, Eleazar
    Price, Alkes L.
    [J]. NATURE GENETICS, 2018, 50 (07) : 1041 - +
  • [19] Identifying Causal Variants at Loci with Multiple Signals of Association
    Hormozdiari, Farhad
    Kostem, Emrah
    Kang, Eun Yong
    Pasaniuc, Bogdan
    Eskin, Eleazar
    [J]. GENETICS, 2014, 198 (02) : 497 - U84
  • [20] A statistical framework for cross-tissue transcriptome-wide association analysis
    Hu, Yiming
    Li, Mo
    Lu, Qiongshi
    Weng, Haoyi
    Wang, Jiawei
    Zekavat, Seyedeh M.
    Yu, Zhaolong
    Li, Boyang
    Gu, Jianlei
    Muchnik, Sydney
    Shi, Yu
    Kunkle, Brian W.
    Mukherjee, Shubhabrata
    Natarajan, Pradeep
    Naj, Adam
    Kuzma, Amanda
    Zhao, Yi
    Crane, Paul K.
    Lu, Hui
    Zhao, Hongyu
    Abner, Erin
    Adams, Perrie M.
    Albert, Marilyn S.
    Albin, Roger L.
    Apostolova, Liana G.
    Arnold, Steven E.
    Asthana, Sanjay
    Atwood, Craig S.
    Baldwin, Clinton T.
    Barber, Robert C.
    Barnes, Lisa L.
    Barral, Sandra
    Beach, Thomas G.
    Becker, James T.
    Beecham, Gary W.
    Beekly, Duane
    Bennett, David A.
    Bigio, Eileen H.
    Bird, Thomas D.
    Blacker, Deborah
    Boeve, Bradley F.
    Bowen, James D.
    Boxer, Adam
    Burke, James R.
    Burns, Jeffrey M.
    Buxbaum, Joseph D.
    Cairns, Nigel J.
    Cantwell, Laura B.
    Cao, Chuanhai
    Carlson, Chris S.
    [J]. NATURE GENETICS, 2019, 51 (03) : 568 - +