Blocking sets of Hermitian generalized quadrangles

被引:0
作者
Cossidente, Antonio [1 ]
Pavese, Francesco [1 ]
机构
[1] Univ Basilicata, Dipartimento Matemat Informat & Econ, I-85100 Potenza, Italy
关键词
Hermitian generalized quadrangle; Blocking set; Tight set; Cyclic spread; Unital;
D O I
10.1016/j.disc.2014.08.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some infinite families of minimal blocking sets on Hermitian generalized quadrangles are constructed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 46
页数:4
相关论文
共 50 条
  • [41] Classification of minimal blocking sets in PG(2,9)
    Botteldoorn, Arne
    Coolsaet, Kris
    Fack, Veerle
    JOURNAL OF GEOMETRY, 2024, 115 (01)
  • [42] MINIMUM SIZE BLOCKING SETS OF CERTAIN LINE SETS WITH RESPECT TO AN ELLIPTIC QUADRIC IN PG(3, q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (02) : 132 - 147
  • [43] Small proper double blocking sets in Galois planes of prime order
    Lisonek, Petr
    Wallis, Joanna
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4052 - 4056
  • [44] Blocking sets of secant and tangent lines with respect to a quadric of PG(n, q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [45] Blocking sets of tangent lines to a hyperbolic quadric in PG(3,3)
    De Bruyn, Bart
    Sahoo, Binod Kumar
    Sahu, Bikramaditya
    DISCRETE APPLIED MATHEMATICS, 2019, 266 : 121 - 129
  • [46] Blocking sets of tangent and external lines to an elliptic quadric in PG(3,q)
    Bart De Bruyn
    Puspendu Pradhan
    Binod Kumar Sahoo
    Proceedings - Mathematical Sciences, 2021, 131
  • [47] Blocking sets of tangent and external lines to an elliptic quadric in PG(3,q)
    De Bruyn, Bart
    Pradhan, Puspendu
    Sahoo, Binod Kumar
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):
  • [48] Blocking sets of tangent and external lines to a hyperbolic quadric in PG(3, q)
    De Bruyn, Bart
    Sahoo, Binod Kumar
    Sahu, Bikramaditya
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2820 - 2826
  • [49] Three families of multiple blocking sets in Desarguesian projective planes of even order
    Anton Betten
    Eun Ju Cheon
    Seon Jeong Kim
    Tatsuya Maruta
    Designs, Codes and Cryptography, 2013, 68 : 49 - 59
  • [50] Blocking sets of nonsecant lines to a conic in PG(2,q), q odd
    Aguglia, A
    Korchmáros, G
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (04) : 292 - 301