A Christoffel-Darboux formula for multiple orthogonal polynomials

被引:42
作者
Daems, E [1 ]
Kuijlaars, ABJ [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
关键词
Christoffel-Darboux formula; multiple orthogonal polynomials; Riemann-Hilbert problem;
D O I
10.1016/j.jat.2004.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bleher and Kuijlaars recently showed that the eigenvalue correlations from matrix ensembles with external source can be expressed by means of a kernel built out of special multiple orthogonal polynomials. We derive a Christoffel-Darboux formula for this kernel for general multiple orthogonal polynomials. In addition, we show that the formula can be written in terms of the solution of the Riemann-Hilbert problem for multiple orthogonal polynomials, which will be useful for asymptotic analysis. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:190 / 202
页数:13
相关论文
共 15 条
[1]   Multiple orthogonal polynomials [J].
Aptekarev, AI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :423-447
[2]   Multiple orthogonal polynomials for classical weights [J].
Aptekarev, AI ;
Branquinho, A ;
Van Assche, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3887-3914
[3]  
Bleher PM, 2004, INT MATH RES NOTICES, V2004, P109
[4]  
BLEHER PM, IN PRESS COMM MATH P
[5]   Extension of level-spacing universality [J].
Brezin, E ;
Hikami, S .
PHYSICAL REVIEW E, 1997, 56 (01) :264-269
[6]  
COUSSEMENT J, IN PRESS J COMPUT AP
[7]  
Deift P A., 1999, ORTHOGONAL POLYNOMIA
[8]   THE ISOMONODROMY APPROACH TO MATRIX MODELS IN 2D QUANTUM-GRAVITY [J].
FOKAS, AS ;
ITS, AR ;
KITAEV, AV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (02) :395-430
[9]  
MAHLER K, 1968, COMPOS MATH, V19, P95
[10]   ASYMPTOTICS OF DIAGONAL HERMITE-PADE POLYNOMIALS [J].
NUTTALL, J .
JOURNAL OF APPROXIMATION THEORY, 1984, 42 (04) :299-386