Model-based clustering of longitudinal data

被引:0
作者
McNicholas, Paul D. [1 ]
Murphy, T. Brendan [2 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2010年 / 38卷 / 01期
基金
加拿大自然科学与工程研究理事会; 爱尔兰科学基金会;
关键词
Cholesky decomposition; longitudinal data; mixture models; model-based clustering; time course data; yeast sporulation; HIGH-DIMENSIONAL DATA; DISCRIMINANT-ANALYSIS; MAXIMUM-LIKELIHOOD; MIXTURES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new family of mixture models for the model-based clustering of longitudinal data is introduced. The covariance structures of eight members of this new family of models are given and the associated maximum likelihood estimates for the parameters are derived via expectation-maximization (EM) algorithms. The Bayesian information criterion is used for model selection and a convergence criterion based on the Aitken acceleration is used to determine the convergence of these EM algorithms. This new family of models is applied to yeast sporulation time course data, where the models give good clustering performance. Further constraints are then imposed on the decomposition to allow a deeper investigation of the correlation structure of the yeast data. These constraints greatly extend this new family of models, with the addition of many parsimonious models. The Canadian Journal of Statistics 38: 153-168; 2010 (c) 2010 Statistical Society of Canada
引用
收藏
页码:153 / 168
页数:16
相关论文
共 39 条
  • [1] [Anonymous], 2000, Sankhya Ser. A, DOI DOI 10.2307/25051289
  • [2] MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING
    BANFIELD, JD
    RAFTERY, AE
    [J]. BIOMETRICS, 1993, 49 (03) : 803 - 821
  • [3] THE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR MIXTURES OF DENSITIES FROM THE ONE-PARAMETER EXPONENTIAL FAMILY
    BOHNING, D
    DIETZ, E
    SCHAUB, R
    SCHLATTMANN, P
    LINDSAY, BG
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1994, 46 (02) : 373 - 388
  • [4] High-dimensional data clustering
    Bouveyron, C.
    Girard, S.
    Schmid, C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 502 - 519
  • [5] GAUSSIAN PARSIMONIOUS CLUSTERING MODELS
    CELEUX, G
    GOVAERT, G
    [J]. PATTERN RECOGNITION, 1995, 28 (05) : 781 - 793
  • [6] The transcriptional program of sporulation in budding yeast
    Chu, S
    DeRisi, J
    Eisen, M
    Mulholland, J
    Botstein, D
    Brown, PO
    Herskowitz, I
    [J]. SCIENCE, 1998, 282 (5389) : 699 - 705
  • [7] Crowder M.J., 1990, ANAL REPEATED MEASUR
  • [8] Model-based clustering for longitudinal data
    De la Cruz-Mesia, Rolando
    Quintanab, Fernando A.
    Marshall, Guillermo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1441 - 1457
  • [9] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [10] Diggle Peter, 2002, Analysis of longitudinal data