A network-based integrated framework for predicting virus-prokaryote interactions

被引:80
作者
Wang, Weili [1 ]
Ren, Jie [1 ,5 ]
Tang, Kujin [1 ]
Dart, Emily [2 ]
Ignacio-Espinoza, Julio Cesar [3 ]
Fuhrman, Jed A. [3 ]
Braun, Jonathan [4 ]
Sun, Fengzhu [1 ]
Ahlgren, Nathan A. [2 ]
机构
[1] Univ Southern Calif, Quantitat & Computat Biol Program, Los Angeles, CA 90089 USA
[2] Clark Univ, Biol Dept, Worcester, MA 01610 USA
[3] Univ Southern Calif, Dept Biol Sci, Los Angeles, CA 90089 USA
[4] Cedars Sinai Med Ctr, Inflammatory Bowel & Immunobiol Res Inst, Los Angeles, CA 90048 USA
[5] Google Inc, Mountain View, CA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
BACTERIA; HOST; VIROME; BACTERIOPHAGES; CLASSIFICATION; DIVERSITY;
D O I
10.1093/nargab/lqaa044
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Metagenomic sequencing has greatly enhanced the discovery of viral genomic sequences; however, it remains challenging to identify the host(s) of these new viruses. We developed VirHostMatcher-Net, a flexible, network-based, Markov random field framework for predicting virus-prokaryote interactions using multiple, integrated features: CRISPR sequences and alignment-free similarity measures (s(2)* and WIsH). Evaluation of this method on a benchmark set of 1462 known virus-prokaryote pairs yielded host prediction accuracy of 59% and 86% at the genus and phylum levels, representing 16-27% and 6-10% improvement, respectively, over previous single-feature prediction approaches. We applied our host prediction tool to crAssphage, a human gut phage, and two metagenomic virus datasets: marine viruses and viral contigs recovered from globally distributed, diverse habitats. Host predictions were frequently consistent with those of previous studies, but more importantly, this new tool made many more confident predictions than previous tools, up to nearly 3-fold more (n > 27 000), greatly expanding the diversity of known virus-host interactions.
引用
收藏
页数:19
相关论文
共 80 条
[31]   Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome [J].
Hannigan, Geoffrey D. ;
Duhaime, Melissa B. ;
Koutra, Danai ;
Schloss, Patrick D. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
[32]  
Hastie T.T.R., 2009, Springer series in statistics
[33]   Twelve previously unknown phage genera are ubiquitous in global oceans [J].
Holmfeldt, Karin ;
Solonenko, Natalie ;
Shah, Manesh ;
Corrier, Kristen ;
Riemann, Lasse ;
VerBerkmoes, Nathan C. ;
Sullivan, Matthew B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (31) :12798-12803
[34]   CRISPR/Cas, the Immune System of Bacteria and Archaea [J].
Horvath, Philippe ;
Barrangou, Rodolphe .
SCIENCE, 2010, 327 (5962) :167-170
[35]  
Human Microbiome Project Consortium, 2013, NATURE, V486, DOI [DOI 10.1038/NATURE11234, DOI 10.1038/nature11234]
[36]   The Pacific Ocean Virome (POV): A Marine Viral Metagenomic Dataset and Associated Protein Clusters for Quantitative Viral Ecology [J].
Hurwitz, Bonnie L. ;
Sullivan, Matthew B. .
PLOS ONE, 2013, 8 (02)
[37]   A Bayesian networks approach for predicting protein-protein interactions from genomic data [J].
Jansen, R ;
Yu, HY ;
Greenbaum, D ;
Kluger, Y ;
Krogan, NJ ;
Chung, SB ;
Emili, A ;
Snyder, M ;
Greenblatt, JF ;
Gerstein, M .
SCIENCE, 2003, 302 (5644) :449-453
[38]   Constructing a gene semantic similarity network for the inference of disease genes [J].
Jiang, Rui ;
Gan, Mingxin ;
He, Peng .
BMC SYSTEMS BIOLOGY, 2011, 5
[39]   Centrifuge: rapid and sensitive classification of metagenomic sequences [J].
Kim, Daehwan ;
Song, Li ;
Breitwieser, Florian P. ;
Salzberg, Steven L. .
GENOME RESEARCH, 2016, 26 (12) :1721-1729
[40]   Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton [J].
Labonte, Jessica M. ;
Swan, Brandon K. ;
Poulos, Bonnie ;
Luo, Haiwei ;
Koren, Sergey ;
Hallam, Steven J. ;
Sullivan, Matthew B. ;
Woyke, Tanja ;
Wommack, K. Eric ;
Stepanauskas, Ramunas .
ISME JOURNAL, 2015, 9 (11) :2386-2399