A random walk approach to Galton-Watson trees

被引:19
作者
Bennies, J [1 ]
Kersting, G [1 ]
机构
[1] Goethe Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
关键词
branching processes; Galton-Watson trees; random walk excursions; random walk bridges; functional limit theorem;
D O I
10.1023/A:1007862612753
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There are several constructions connecting random walks to branching trees. Here we discuss an approach linking Galton-Watson trees with arbitrary offspring distribution to random walk excursions resp. bridges. In special situations this leads to a connection to three basic statistics from statistical mechanics. Other applications include the description of random subtrees and the contour process of a Galton-Watson tree.
引用
收藏
页码:777 / 803
页数:27
相关论文
共 38 条
[1]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[2]  
Aldous D., 1991, Ann. Appl. Probab., V1, P228, DOI DOI 10.1214/AOAP/1177005936
[4]  
[Anonymous], COMBINATORIAL METHOD
[5]  
BENNIES J, 1995, THESIS
[6]   RANDOM MAPPINGS WITH AN ATTRACTING CENTER - LAGRANGIAN DISTRIBUTIONS AND A REGRESSION FUNCTION [J].
BERG, S ;
MUTAFCHIEV, L .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (03) :622-636
[7]   On distribution tails and expectations of maxima in critical branching processes [J].
Borovkov, KA ;
Vatutin, VA .
JOURNAL OF APPLIED PROBABILITY, 1996, 33 (03) :614-622
[8]   WEAK CONVERGENCE TO BROWNIAN MEANDER AND BROWNIAN EXCURSION [J].
DURRETT, RT ;
IGLEHART, DL ;
MILLER, DR .
ANNALS OF PROBABILITY, 1977, 5 (01) :117-129
[9]   TOTAL PROGENY IN A BRANCHING PROCESS AND A RELATED RANDOM WALK [J].
DWASS, M .
JOURNAL OF APPLIED PROBABILITY, 1969, 6 (03) :682-&
[10]  
Feller W., 1966, INTRO PROBABILITY TH, V2