Fluorescent probes for "off-on" highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots

被引:164
|
作者
Zhang, Yi [1 ,2 ,3 ,4 ]
Cui, Peipei [5 ]
Zhang, Feng [1 ,4 ]
Feng, Xiaoting [1 ,2 ]
Wang, Yaling [1 ,4 ]
Yang, Yongzhen [1 ,2 ,4 ]
Liu, Xuguang [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Chem & Chem Engn, Taiyuan 030024, Peoples R China
[3] Lyuliang Univ, Dept Chem & Chem Engn, Lyuliang 033001, Peoples R China
[4] Taiyuan Univ Technol, Res Ctr Adv Mat Sci & Technol, Taiyuan 030024, Peoples R China
[5] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen-doped carbon dots; Fluorescence detection; Hg2+; L-Cys; High selectivity; High sensitivity; GRAPHENE QUANTUM DOTS; LABEL-FREE DETECTION; POT GREEN SYNTHESIS; SELECTIVE DETECTION; FACILE SYNTHESIS; MERCURY IONS; NANODOTS; LUMINESCENT; NANOPARTICLES; WATER;
D O I
10.1016/j.talanta.2016.02.018
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg2+ can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg2+ complex. Static fluorescence quenching towards Hg2+ is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg2+ system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg2+ complex to form a more stable Hg2+-L-Cys complex by Hg2+-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg2+, with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 M. Interestingly, NCDs-Hg2+ system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 M. Further, the sensitivity of NCDs to Hg2+ is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 M. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:288 / 300
页数:13
相关论文
共 50 条
  • [1] Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and L-cysteine by means of fluorescence "Off-On" switching
    Yan, Fanyong
    Shi, Dechao
    Zheng, Tancheng
    Yun, Kaiyi
    Zhou, Xuguang
    Chen, Li
    SENSORS AND ACTUATORS B-CHEMICAL, 2016, 224 : 926 - 935
  • [2] Nitrogen-doped carbon quantum dots as fluorescent probe for "off-on" detection of mercury ions, L-cysteine and iodide ions
    Huang, Hao
    Weng, Yuhui
    Zheng, Lihao
    Yao, Bixia
    Weng, Wen
    Lin, Xiuchun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 506 : 373 - 378
  • [3] Carbon dots as fluorescent probes for "off-on" detection of Cu2+ and L-cysteine in aqueous solution
    Zong, Jie
    Yang, Xiaoling
    Trinchi, Adrian
    Hardin, Simon
    Cole, Ivan
    Zhu, Yihua
    Li, Chunzhong
    Muster, Tim
    Wei, Gang
    BIOSENSORS & BIOELECTRONICS, 2014, 51 : 330 - 335
  • [4] Fluorescence "Off-On" Probe for L-Cysteine Detection Based on Nitrogen Doped Carbon Dots
    Xu, Yin-long
    Bai, Rong-biao
    Qi, Cai-yu
    Ren, Zeng
    Jia, Xiu-zhi
    Kan, Zi-gui
    Li, Cao-long
    Wang, Fei
    JOURNAL OF FLUORESCENCE, 2019, 29 (04) : 819 - 825
  • [5] Water-soluble, nitrogen-doped fluorescent carbon dots for highly sensitive and selective detection of Hg2+ in aqueous solution
    Zhang, Y.
    He, Y. H.
    Cui, P. P.
    Feng, X. T.
    Chen, L.
    Yang, Y. Z.
    Liu, X. G.
    RSC ADVANCES, 2015, 5 (50): : 40393 - 40401
  • [6] A fluorescent probe based on N-doped carbon dots for highly sensitive detection of Hg2+ in aqueous solutions
    Gao, Zhi-hao
    Lin, Zheng-zhong
    Chen, Xiao-mei
    Zhong, Hui-ping
    Huang, Zhi-yong
    ANALYTICAL METHODS, 2016, 8 (10) : 2297 - 2304
  • [7] Hydrothermal synthesis of nitrogen-doped carbon dots as a sensitive fluorescent probe for the rapid, selective determination of Hg2+
    Zhang, Yong
    Jing, Na
    Zhang, Junqiu
    Wang, Yingte
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2017, 97 (09) : 841 - 853
  • [8] Polymer composite fluorescent hydrogel film based on nitrogen-doped carbon dots and their application in the detection of Hg2+ ions
    Yu, Shujuan
    Chen, Kuan
    Wang, Feng
    Zhu, Yongfei
    Zhang, Xuehong
    LUMINESCENCE, 2017, 32 (06) : 970 - 977
  • [9] Highly selective and sensitive fluorescence probe based on thymine-modified carbon dots for Hg2+ and L-cysteine detection
    Xu, Hui
    Huang, Shanshan
    Liao, Caiyun
    Li, Yang
    Zheng, Baozhan
    Du, Juan
    Xiao, Dan
    RSC ADVANCES, 2015, 5 (108): : 89121 - 89127
  • [10] Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine
    Sun, Dong
    Liu, Tiantian
    Wang, Chunfeng
    Yang, Lifang
    Yang, Shengkai
    Zhuo, Kelei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2020, 240 (240)