Single and Multiple Doping in Graphene Quantum Dots: Unraveling the Origin of Selectivity in the Oxygen Reduction Reaction

被引:175
作者
Favaro, Marco [1 ]
Ferrighi, Lara [2 ]
Fazio, Gianluca [2 ]
Colazzo, Luciano [1 ]
Di Vaentin, Cristiana [2 ]
Durante, Christian [1 ]
Sedona, Francesco [1 ]
Gennaro, Armando [1 ]
Agnoli, Stefano [1 ]
Granozzi, Gaetano [1 ]
机构
[1] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy
[2] Univ Milano Bicocca, Dipartimento Sci Mat, I-20125 Milan, Italy
来源
ACS CATALYSIS | 2015年 / 5卷 / 01期
关键词
graphene; graphene oxide quantum dots; doped-quantum dots; multidoping; electrochemical preparation; oxygen reduction reaction; density functional theory; NITROGEN-DOPED GRAPHENE; METAL-FREE ELECTROCATALYSTS; CATALYST-FREE SYNTHESIS; GLASSY-CARBON; ELECTRONIC-STRUCTURE; RECENT PROGRESS; FUNCTIONALIZED GRAPHENE; GRAPHITE OXIDE; ACTIVE-SITES; BAND-GAP;
D O I
10.1021/cs501211h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Singly and multiply doped graphene oxide quantum dots have been synthesized by a simple electrochemical method using water as solvent. The obtained materials have been characterized by photoemission spectroscopy and scanning tunneling microscopy, in order to get a detailed picture of their chemical and structural properties. The electrochemical activity toward the oxygen reduction reaction of the doped graphene oxide quantum dots has been investigated by cyclic voltammetry and rotating disk electrode measurements, showing a clear decrease of the overpotential as a function of the dopant according to the sequence: N similar to B > B,N. Moreover, assisted by density functional calculations of the Gibbs free energy associated with every electron transfer, we demonstrate that the selectivity of the reaction is controlled by the oxidation states of the dopants: as-prepared graphene oxide quantum dots follow a two-electron reduction path that leads to the formation of hydrogen peroxide, whereas after the reduction with NaBH4, the same materials favor a four-electron reduction of oxygen to water.
引用
收藏
页码:129 / 144
页数:16
相关论文
共 104 条
[1]   Second generation graphene: Opportunities and challenges for surface science [J].
Agnoli, Stefano ;
Granozzi, Gaetano .
SURFACE SCIENCE, 2013, 609 :1-5
[2]   Luminescent Carbon Nanodots: Emergent Nanolights [J].
Baker, Sheila N. ;
Baker, Gary A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (38) :6726-6744
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures [J].
Cattelan, Mattia ;
Agnoli, Stefano ;
Favaro, Marco ;
Garoli, Denis ;
Romanato, Filippo ;
Meneghetti, Moreno ;
Barinov, Alexei ;
Dudin, Pavel ;
Granozzi, Gaetano .
CHEMISTRY OF MATERIALS, 2013, 25 (09) :1490-1495
[5]   B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Kwon, Han Chang ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3694-3699
[6]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[7]   Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction [J].
Daems, Nick ;
Sheng, Xia ;
Vankelecom, Ivo F. J. ;
Pescarmona, Paolo P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4085-4110
[8]   Functionalization of Graphene for Efficient Energy Conversion and Storage [J].
Dai, Liming .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (01) :31-42
[9]   Amplifying Charge-Transfer Characteristics of Graphene for Triiodide Reduction in Dye-Sensitized Solar Cells [J].
Das, Santanu ;
Sudhagar, P. ;
Verma, Ved ;
Song, Donghoon ;
Ito, Eisuke ;
Lee, Sang Yun ;
Kang, Yong Soo ;
Choi, WonBong .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (19) :3729-3736
[10]   Toward N-Doped Graphene via Solvothermal Synthesis [J].
Deng, Dehui ;
Pan, Xiulian ;
Yu, Liang ;
Cui, Yi ;
Jiang, Yeping ;
Qi, Jing ;
Li, Wei-Xue ;
Fu, Qiang ;
Ma, Xucun ;
Xue, Qikun ;
Sun, Gongquan ;
Bao, Xinhe .
CHEMISTRY OF MATERIALS, 2011, 23 (05) :1188-1193