Enhanced Performance of the Sb2Se3 Thin-Film Solar Cell by Organic Molecule-Induced Crystallization and Suppression of the Interface Recombination

被引:14
作者
Cheng, Chuan-Hui [1 ]
Li, Meng [1 ]
Song, Hang-Qi [1 ]
Li, Wen-Hui [1 ]
Leng, Jing [2 ]
Tian, Wenming [2 ]
Cui, Rongrong [2 ]
Zhao, Chunyi [2 ]
Jin, Shengye [2 ]
Liu, Weifeng [3 ]
Cong, Shulin [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
[3] Hainan Univ, Mech & Elect Engn Coll, Haikou 570228, Hainan, Peoples R China
关键词
thin-film solar cell; Sb2Se3; buffer; hole transport layer; NPB;
D O I
10.1021/acsaem.1c00640
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Antimony selenide (Sb2Se3) is an emerging photovoltaic material. We demonstrate that an organic small molecule of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) can induce the crystallization of the Sb2Se3 film during the annealing treatment. By introducing an NPB buffer layer, the Sb2Se3 film crystal quality is improved, and the photogenerated carrier lifetime is increased. In addition, the introduction of an NPB layer can suppress the interface recombination near the anode. The solar cell was fabricated using C-60 as an electron transport layer by vacuum thermal evaporation. We took indium tin oxide/NPB (6.0 nm)/Sb2Se3 (similar to 50 nm)/C-60 (5.0 nm)/Alq(3) (3.0 nm)/Al as the device architecture, where Alq3 is tris(8-hydroxyquinolinato) aluminum. By adding an NPB buffer layer, the open-circuit voltage is elevated from 0.35 to 0.40 V, and the power conversion efficiency is dramatically enhanced from 3.21 to 5.03%. We attributed the improved performance to the suppression of the bulk and the interface recombination.
引用
收藏
页码:5079 / 5085
页数:7
相关论文
共 28 条
[1]   CdTe solar cells with open-circuit voltage breaking the 1V barrier [J].
Burst, J. M. ;
Duenow, J. N. ;
Albin, D. S. ;
Colegrove, E. ;
Reese, M. O. ;
Aguiar, J. A. ;
Jiang, C. -S. ;
Patel, M. K. ;
Al-Jassim, M. M. ;
Kuciauskas, D. ;
Swain, S. ;
Ablekim, T. ;
Lynn, K. G. ;
Metzger, W. K. .
NATURE ENERGY, 2016, 1
[2]   Enhancement in the efficiency of Sb2Se3 solar cells by adding low lattice mismatch CuSbSe2 hole transport layer [J].
Cang, Qingfei ;
Guo, Huafei ;
Jia, Xuguang ;
Ning, Huan ;
Ma, Changhao ;
Zhang, Jiayi ;
Yuan, Ningyi ;
Ding, Jianning .
SOLAR ENERGY, 2020, 199 :19-25
[3]   Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers [J].
Choi, Yong Chan ;
Lee, Yong Hui ;
Im, Sang Hyuk ;
Noh, Jun Hong ;
Mandal, Tarak Nath ;
Yang, Woon Seok ;
Seok, Sang Il .
ADVANCED ENERGY MATERIALS, 2014, 4 (07)
[4]   960-mV Open-Circuit Voltage Chalcopyrite Solar Cell [J].
Hiroi, Homare ;
Iwata, Yasuaki ;
Horiguchi, Kyouhei ;
Sugimoto, Hiroki .
IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (01) :309-312
[5]  
Huang T., 2018, THESIS CHINA ACAD J
[6]   6.6% efficient antimony selenide solar cells using grain structure control and an organic contact layer [J].
Hutter, Oliver S. ;
Phillips, Laurie J. ;
Durose, Ken ;
Major, Jonathan D. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 188 :177-181
[7]   Efficient Double Buffer Layer Sb2 (SexS1-x)3 Thin Film Solar Cell Via Single Source Evaporation [J].
Ishaq, Muhammad ;
Deng, Hui ;
Yuan, Shengjie ;
Zhang, Huan ;
Khan, Jahangeer ;
Farooq, Umar ;
Song, Haisheng ;
Tang, Jiang .
SOLAR RRL, 2018, 2 (10)
[8]   Sb2(S1-xSex)3 solar cells: the impact of radiative and non-radiative loss mechanisms [J].
Jimenez, Thalia ;
Seuret-Jimenez, D. ;
Vigil-Galan, O. ;
Basurto-Pensado, M. A. ;
Courel, Maykel .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (43)
[9]   Growth mechanism of Sb2Se3 thin films for photovoltaic application by vapor transport deposition [J].
Kondrotas, Rokas ;
Zhang, Jun ;
Wang, Chong ;
Tang, Jiang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 199 :16-23
[10]   Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells -: art. no. 123509 [J].
Koster, LJA ;
Mihailetchi, VD ;
Ramaker, R ;
Blom, PWM .
APPLIED PHYSICS LETTERS, 2005, 86 (12) :1-3