Harnack inequalities for non-local operators of variable order

被引:90
作者
Bass, RF [1 ]
Kassmann, M
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
Harnack inequality; non-local operator; stable processes; Levy processes; jump processes; integral operators;
D O I
10.1090/S0002-9947-04-03549-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider harmonic functions with respect to the operator Lu(x) = integral [u(x + h) - u(x)-1((\h\ less than or equal to 1))h . delu(x)]n(x, h)dh. Under suitable conditions on n(x, h) we establish a Harnack inequality for functions that are nonnegative and harmonic in a domain. The operator L is allowed to be anisotropic and of variable order.
引用
收藏
页码:837 / 850
页数:14
相关论文
共 20 条
[1]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO
[2]  
2-L
[3]   UNIQUENESS IN LAW FOR PURE JUMP MARKOV-PROCESSES [J].
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (02) :271-287
[4]   Harnack inequalities for jump processes [J].
Bass, RF ;
Levin, DA .
POTENTIAL ANALYSIS, 2002, 17 (04) :375-388
[5]   Transition probabilities for symmetric jump processes [J].
Bass, RF ;
Levin, DA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2933-2953
[6]  
Bertoin J., 1996, Levy Processes
[7]  
Blumenthal R. M., 1968, PURE APPL MATH, V29
[8]   Harnack inequality for stable processes on d-sets [J].
Bogdan, K ;
Stós, A ;
Sztonyk, P .
STUDIA MATHEMATICA, 2003, 158 (02) :163-198
[9]  
Bogdan K., 2002, Bulletin of the Polish Academy of Sciences, Technical Sciences, V50, P361
[10]   Heat kernel estimates for stable-like processes on d-sets [J].
Chen, ZQ ;
Kumagai, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) :27-62