Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation

被引:49
作者
Akrivis, G [1 ]
Smyrlis, YS
机构
[1] Univ Ioannina, Dept Comp Sci, GR-45110 Ioannina, Greece
[2] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Kuramoto-Sivashinsky equation; implicit-explicit BDF methods; periodic attractors; period doubling cascades;
D O I
10.1016/j.apnum.2004.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the periodic initial value problem for the Kuramoto-Sivashinsky (KS) equation. We approximate the solution by discretizing in time by implicit-explicit BDF schemes and in space by a pseudo-spectral method. We present the results of various numerical experiments. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 169
页数:19
相关论文
共 27 条
[1]  
Akrivis G, 2004, MATH COMPUT, V73, P613, DOI 10.1090/S0025-5718-03-01573-4
[2]   Implicit-explicit multistep methods for quasilinear parabolic equations [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :521-541
[3]   Implicit-explicit multistep finite element methods for nonlinear parabolic problems [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
MATHEMATICS OF COMPUTATION, 1998, 67 (222) :457-477
[4]  
AKRIVIS G, 1996, RAIRO-MATH MODEL NUM, V30, P157
[5]  
[Anonymous], 1988, SPECTRAL METHODS FLU
[6]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[7]  
Bernardi C, 1997, Handbook of numerical analysis, VV, DOI [10.1016/S1570-8659(97)80003-8, DOI 10.1016/S1570-8659(97)80003-8]
[8]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[9]   ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
PHYSICA D, 1993, 67 (04) :321-326
[10]  
Constantin P., 1988, APPL MATH SCI, V70