Geometric classification of topological quantum phases

被引:2
|
作者
Kohler, C [1 ]
机构
[1] Univ Saarland, Fachrichtung Theoret Phys, D-66041 Saarbrucken, Germany
关键词
topological quantum phases; higher-dimensional unification; space-time defects; non-Riemannian geometry; gauge theory;
D O I
10.1016/S0375-9601(97)00828-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On the basis of the principle that topological quantum phases arise from the scattering around space-time defects in higher-dimensional unification, a geometric model is presented that associates with each quantum phase an element of a transformation group. The model is exemplified for quantum phases in electromagnetism and gravitation. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 50 条
  • [1] Geometric classification of topological quantum phases
    Kohler, C.
    Physics Letters. Section A: General, Atomic and Solid State Physics, 237 (4-5):
  • [2] GEOMETRIC PHASES AND TOPOLOGICAL QUANTUM COMPUTATION
    Vedral, Vlatko
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (01) : 1 - 23
  • [3] Dynamical classification of topological quantum phases
    Zhang, Lin
    Zhang, Long
    Niu, Sen
    Liu, Xiong-Jun
    SCIENCE BULLETIN, 2018, 63 (21) : 1385 - 1391
  • [4] Dynamical classification of topological quantum phases
    Lin Zhang
    Long Zhang
    Sen Niu
    Xiong-Jun Liu
    ScienceBulletin, 2018, 63 (21) : 1385 - 1391
  • [5] Topological properties of geometric phases
    Fujikawa, Kazuo
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2006, (164): : 194 - 202
  • [6] When geometric phases turn topological
    Aguilar, P.
    Chryssomalakos, C.
    Guzman-Gonzalez, E.
    Hanotel, L.
    Serrano-Ensastiga, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [7] Geometric stability of topological lattice phases
    T. S. Jackson
    Gunnar Möller
    Rahul Roy
    Nature Communications, 6
  • [8] Geometric stability of topological lattice phases
    Jackson, T. S.
    Moeller, Gunnar
    Roy, Rahul
    NATURE COMMUNICATIONS, 2015, 6
  • [9] Scaling of geometric phases close to the topological quantum phase transition in Kitaev's quantum wire model
    Shan, Chuan-Jia
    Li, Jin-Xin
    Cheng, Wei-Wen
    Liu, Ji-Bing
    Liu, Tang-Kun
    LASER PHYSICS LETTERS, 2014, 11 (03)
  • [10] Geometric phases in quantum information
    Sjoeqvist, Erik
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (19) : 1311 - 1326