Local spectral convergence in RCD*(K, N) spaces

被引:39
作者
Ambrosio, Luigi [1 ]
Honda, Shouhei [2 ]
机构
[1] Scuola Normale Super Pisa, Pisa, Italy
[2] Tohoku Univ, Sendai, Miyagi, Japan
关键词
Ricci curvature; Laplacian; Metric measure spaces; METRIC MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; SOBOLEV SPACES; ALEXANDROV; RIGIDITY;
D O I
10.1016/j.na.2017.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give necessary and sufficient conditions for the validity of the local spectral convergence, in balls, in the setting of RCD* spaces. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 38 条
[1]  
Ambrosio L., 2019, MEM AM MATH SOC
[2]  
Ambrosio L., ARXIV160507908
[3]   Weak and strong convergence of derivations and stability of flows with respect to MGH convergence [J].
Ambrosio, Luigi ;
Stra, Federico ;
Trevisan, Dario .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (03) :1182-1229
[4]  
Ambrosio L, 2015, ADV STU P M, V67, P1
[5]   METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) :1405-1490
[6]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[7]   BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS [J].
Ambrsio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
ANNALS OF PROBABILITY, 2015, 43 (01) :339-404
[8]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[9]   Lower bounds on Ricci curvature and the almost rigidity of warped products [J].
Cheeger, J ;
Colding, TH .
ANNALS OF MATHEMATICS, 1996, 144 (01) :189-237
[10]  
Cheeger J, 2000, J DIFFER GEOM, V54, P37