On finite element methods for coupling eigenvalue problems

被引:0
|
作者
De Schepper, H [1 ]
Van Keer, R [1 ]
机构
[1] Univ Ghent, Fac Engn, Dept Math Anal, B-9000 Ghent, Belgium
关键词
eigenvalue problems; nonlocal transition conditions; imperfect interpolation;
D O I
10.1016/B978-008043568-8/50023-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider second-order elliptic eigenvalue problems on a composite structure, consisting of polygonal domains in the plane, where the interaction between the domains is expressed through nonlocal coupling conditions of Dirichlet type. We study the finite element approximation without and with numerical quadrature, by adapting the operator method, outlined in [9]. In view of the error analysis, a crucial point is the definition and error estimation of a suitably modified vector Lagrange interpolant on the mesh. Compared to the results in [9], the same order of convergence in terms of the mesh parameter is achieved, however under a higher regularity assumption for the exact eigenfunctions.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 50 条
  • [31] Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Me, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 435 - 448
  • [32] FINITE DIFFERENCE METHODS FOR MILDLY NONLINEAR EIGENVALUE PROBLEMS
    SIMPSON, RB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 134 - &
  • [34] THE COUPLING OF BOUNDARY ELEMENT AND FINITE-ELEMENT METHODS
    HSIAO, GC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T493 - T503
  • [35] A reduced order model for the finite element approximation of eigenvalue problems
    Bertrand, Fleurianne
    Boffi, Daniele
    Halim, Abdul
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [36] Coupling of mixed finite element methods and boundary element methods in elasticity
    Funken, SA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S833 - S834
  • [37] Finite element approximations of nonlinear eigenvalue problems in quantum physics
    Chen, Huajie
    He, Lianhua
    Zhou, Aihui
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) : 1846 - 1865
  • [38] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    C. Carstensen
    J. Gedicke
    V. Mehrmann
    A. Międlar
    Numerische Mathematik, 2014, 128 : 615 - 634
  • [39] A mixed finite element method for fourth order eigenvalue problems
    Nataraj, Neela
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (01) : 60 - 72
  • [40] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106