Tangential alexander polynomials and non-reduced degeneration

被引:4
作者
Oka, M. [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 162, Japan
来源
SINGULARITIES IN GEOMETRY AND TOPOLOGY, 2005 | 2007年
关键词
D O I
10.1142/9789812706812_0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a notion of tangential Alexander polynomials for plane curves and study the relation with theta-Alexander polynomial. As an application, we use these polynomials to study a non-reduced degeneration C(t), -> D(0) + jL. We show that there exists a certain surjectivity of the fundamental groups and divisibility among their Alexander polynomials.
引用
收藏
页码:669 / 704
页数:36
相关论文
共 33 条
[1]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[2]   On Alexander polynomials of torus curves [J].
Audoubert, B ;
Nguyen, TC ;
Oka, M .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2005, 57 (04) :935-957
[3]  
Bartolo EA, 1998, J MATH SOC JPN, V50, P521
[4]   Zariski pairs of index 19 and Mordell-Weil groups of K3 surfaces [J].
Bartolo, EA ;
Tokunaga, HO .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 80 :127-144
[5]  
DELIGNE P, 1981, LECT NOTES MATH, V842, P1
[6]   ON THE FUNDAMENTAL GROUP OF THE COMPLEMENT OF A NODE CURVE [J].
FULTON, W .
ANNALS OF MATHEMATICS, 1980, 111 (02) :407-409
[7]   ON THE SEVERI PROBLEM [J].
HARRIS, J .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :445-461
[8]  
LIBGOBER A, 1987, P SYMP PURE MATH, V46, P29
[9]   ALEXANDER POLYNOMIAL OF PLANE ALGEBRAIC-CURVES AND CYCLIC MULTIPLE PLANES [J].
LIBGOBER, A .
DUKE MATHEMATICAL JOURNAL, 1982, 49 (04) :833-851
[10]  
Libgober A, 2001, NATO SCI SER II MATH, V36, P215