Glass-fiber reinforced polyamide 66 is flame retarded with a mixture of melamine-poly(zinc phosphate), (Safire (R) 400) and diethyl aluminium phosphinate. The performance of this synergistic combination of additives is multi-modal and a comprehensive investigation is undertaken to elucidate the underlying flame retardancy mechanism. The strategy was to characterize the different chemical species responsible for flame retardancy that are generated in gas and condensed phases under different fire scenarios. Following heat release rate (HRR) curve of flame retarded polyamide formulations obtained by mass loss calorimeter, samples in different stages of degradation are collected and investigated. Further flame retardants and formulations were degraded in tubular furnace whose temperature protocol relied on thermal degradation profile obtained from thermogravimetric analysis (TGA). In either case, species generated in condensed phase were studied by solid state nuclear magnetic resonance spectroscopy (magic angle spinning (MAS) NMR; Al-27, P-31 and C-13), Fourier transform Infra-red spectroscopy (FTIR), X-ray powder diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM), and optical microscopy, whereas TGA coupled FTIR, and pyrolysis gas chromatography mass spectrometry (Py/GC/MS) were utilised to investigate species released in gas phase. Flame retardancy mechanism is elaborated based on the identification of the chemical species in both gas and condensed phases and their specific contributing role. (C) 2014 Elsevier Ltd. All rights reserved.