Green synthesis and spectral analysis of surface encapsulated copper (II) oxide nanostructures

被引:7
作者
Prasad, Arun S. [1 ]
机构
[1] TKMM Coll, Post Grad Dept Phys, Alappuzha 690513, Kerala, India
关键词
nanostructures; phytochemicals; Leucas aspera; thumbe; monoclinic; GAS-SENSING PROPERTIES; CUO NANOWIRES; CU2O NANOCUBES; CATALYTIC-ACTIVITY; OPTICAL-PROPERTIES; AQUEOUS EXTRACT; THIN-FILMS; NANOPARTICLES; FABRICATION; FACILE;
D O I
10.2478/msp-2019-0062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanostructures of copper (II) oxide were synthesized through chemical reduction of copper (II) sulfate pentahydrate using phytochemicals present in leaf extracts of Leucas aspera. The crystalline phases and size were assessed by X-ray diffraction data analysis. From the Bragg reflection peaks, existence of monoclinic end-centered phase of copper (II) oxide along with presence of cubic primitive phase of copper (I) oxide and traces of cubic face centered lattices of zero valent copper was revealed. The three Raman active modes corresponding to CuO phase were identified in the sample with permissible merging of characteristic bands due to nanostructuring and organic capping. The surface topography measurement using field emission scanning electron microscope evidenced the occurrence of cylindrical rod shaped morphological structures along with a number of unshaped aggregates in the sample. The effective crystallite size and lattice strain were estimated from Williamson-Hall analysis of Bragg reflection data. Tauc plot analysis of UV-Vis-NIR absorption data in direct transition mode provided an estimation of band gap, viz. 1.83 eV and 2.06 eV respectively, for copper (II) oxide and copper (I) oxide. Thermal degradation study using thermogravimetric curve analysis could reveal the amount of moisture content, volatile components as well as the polymer capping over nanorods present in the sample. It could be seen that upon heating, inorganic core crystals undergo oxidation process and at temperature above 464 degrees C, the sample was found to be composed solely of inorganic crystallite phase of copper (II) oxide.
引用
收藏
页码:503 / 509
页数:7
相关论文
共 52 条
[1]  
[Anonymous], 1978, ELEMENTS XRAY DIFFRA
[2]   BANDGAP AND OPTICAL-TRANSITIONS IN THIN-FILMS FROM REFLECTANCE MEASUREMENTS [J].
BHATTACHARYYA, D ;
CHAUDHURI, S ;
PAL, AK .
VACUUM, 1992, 43 (04) :313-316
[3]   Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening [J].
Biju, V. ;
Sugathan, Neena ;
Vrinda, V. ;
Salini, S. L. .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (04) :1175-1179
[4]   CuO catalysts supported on attapulgite clay for low-temperature CO oxidation [J].
Cao, Jian-Liang ;
Shao, Gao-Song ;
Wang, Yan ;
Liu, Yuping ;
Yuan, Zhong-Yong .
CATALYSIS COMMUNICATIONS, 2008, 9 (15) :2555-2559
[5]   A study on the photoelectrochemical properties of copper oxide thin films [J].
Chaudhary, YS ;
Agrawal, A ;
Shrivastav, R ;
Satsangi, VR ;
Dass, S .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (02) :131-134
[6]   CONDUCTION IN NON-CRYSTALLINE SYSTEMS .5. CONDUCTIVITY, OPTICAL ABSORPTION AND PHOTOCONDUCTIVITY IN AMORPHOUS SEMICONDUCTORS [J].
DAVIS, EA ;
MOTT, NF .
PHILOSOPHICAL MAGAZINE, 1970, 22 (179) :903-&
[7]   Study of structural and optical properties of cupric oxide nanoparticles [J].
Dhineshbabu, N. R. ;
Rajendran, V. ;
Nithyavathy, N. ;
Vetumperumal, R. .
APPLIED NANOSCIENCE, 2016, 6 (06) :933-939
[8]   Plasma-Enhanced Catalytic CuO Nanowires for CO Oxidation [J].
Feng, Yunzhe ;
Zheng, Xiaolin .
NANO LETTERS, 2010, 10 (11) :4762-4766
[9]   Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures [J].
Gao, Daqiang ;
Yang, Guijin ;
Li, Jinyun ;
Zhang, Jing ;
Zhang, Jinlin ;
Xue, Desheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (43) :18347-18351
[10]   Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-ion Batteries [J].
Gao, Shuyan ;
Yang, Shuxia ;
Shu, Jie ;
Zhang, Shuxia ;
Li, Zhengdao ;
Jiang, Kai .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (49) :19324-19328