Traveling wave solutions for the Richards equation with hysteresis

被引:7
|
作者
El Behi-Gornostaeva, E. [1 ]
Mitra, K. [2 ]
Schweizer, B. [1 ]
机构
[1] TU Dortmund, Fak Math, Vogelspothsweg 87, D-44227 Dortmund, Germany
[2] TU Eindhoven, Dept Math & Comp Sci, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
porous media; hysteresis; traveling wave; saturation overshoot; DYNAMIC CAPILLARY-PRESSURE; BUCKLEY-LEVERETT EQUATION; 2-PHASE FLOW; POROUS-MEDIA; SATURATION OVERSHOOT; PARABOLIC EQUATIONS; SCHEME; MODEL; INFILTRATION; PROPAGATION;
D O I
10.1093/imamat/hxz015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the one-dimensional non-equilibrium Richards equation with play-type hysteresis. It is known that regularized versions of this equation permit traveling wave solutions that show oscillations and, in particular, the physically relevant effect of a saturation overshoot. We investigate here the non-regularized hysteresis operator and combine it with a positive tau-term. Our result is that the model has monotone traveling wave solutions. These traveling waves describe the behavior of fronts in a bounded domain. In a two-dimensional interpretation, the result characterizes the speed of fingers in non-homogeneous solutions.
引用
收藏
页码:797 / 812
页数:16
相关论文
共 50 条
  • [1] Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure
    van Duijn, C. J.
    Mitra, K.
    Pop, I. S.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 41 : 232 - 268
  • [2] Verification of numerical solutions of the Richards equation using a traveling wave solution
    Zlotnik, Vitaly A.
    Wang, Tiejun
    Nieber, John L.
    Simunek, Jirka
    ADVANCES IN WATER RESOURCES, 2007, 30 (09) : 1973 - 1980
  • [3] Front solutions of Richards' equation
    Caputo, Jean-Guy
    Stepanyants, Yury A.
    TRANSPORT IN POROUS MEDIA, 2008, 74 (01) : 1 - 20
  • [4] Front Solutions of Richards’ Equation
    Jean-Guy Caputo
    Yury A. Stepanyants
    Transport in Porous Media, 2008, 74 : 1 - 20
  • [5] The diffusive form of Richards' equation with hysteresis
    Marinoschi, Gabriela
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (02) : 518 - 535
  • [6] EXACT TRAVELING WAVE SOLUTIONS OF A GENERALIZED KAWAHARA EQUATION
    Nikolova, Elena V.
    Dimitrova, Zlatinka I.
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS-BULGARIA, 2019, 49 (02): : 123 - 135
  • [7] Traveling wave solutions for an integrodifference equation of higher order
    Wu, Fuzhen
    AIMS MATHEMATICS, 2022, 7 (09): : 16482 - 16497
  • [8] Traveling wave solutions to the Allen-Cahn equation
    Chen, Chao-Nien
    Zelati, Vittorio Coti
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (04): : 905 - 926
  • [9] Traveling Wave Solutions for Generalized Bretherton Equation
    Amin, Esfahani
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (03) : 381 - 386
  • [10] Sensitivity of Travelling Wave Solution to Richards Equation to Soil Material Property Functions
    Boakye-Ansah, Y. A.
    Grassia, P.
    TRANSPORT IN POROUS MEDIA, 2022, 145 (03) : 789 - 812