VACUUM INTERACTION OF CONIC SINGULARITIES

被引:6
作者
Grats, Yu. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia
关键词
Casimir effect; conic singularity; dimensional regularization; COSMIC STRINGS; SPACE-TIME; SELF-INTERACTION; FLAT SPACE; POINT MASS; POLARIZATION; GRAVITY; FIELDS;
D O I
10.1134/S0040577916020069
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the (tr log)-formalism, we consider the problem of the vacuum interaction of conic singularities in a D-dimensional (D >= 3) space-time. We show that the interaction energy regularized by dimensional regularization contains neither ultraviolet divergences nor divergences associated with the nonintegrable nature of the vacuum mean of the energy-momentum tensor operator. In the case of four space-time dimensions, the result coincides with those obtained previously in a local approach.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 40 条
  • [1] [Anonymous], 2016, Generalized functions. V. 3: Theory of differential equations
  • [2] Vacuum currents induced by a magnetic flux around a cosmic string with finite core
    Bezerra de Mello, E. R.
    Bezerra, V. B.
    Saharian, A. A.
    Harutyunyan, H. H.
    [J]. PHYSICAL REVIEW D, 2015, 91 (06)
  • [3] Induced fermionic current densities by magnetic flux in higher dimensional cosmic string spacetime
    Bezerra de Mello, Eugenio R.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (09)
  • [4] BORDAG M, 1990, ANN PHYS-LEIPZIG, V47, P93, DOI 10.1002/andp.19905020203
  • [5] Bordag M., 2009, ADV CASIMIR EFFECT, V145
  • [6] Cohen A. G., 1999, ARXIVHEPTH9910132V2
  • [7] Solving the hierarchy problem with noncompact extra dimensions
    Cohen, AG
    Kaplan, DB
    [J]. PHYSICS LETTERS B, 1999, 470 (1-4) : 52 - 58
  • [8] Seeking string theory in the cosmos
    Copeland, Edmund J.
    Pogosian, Levon
    Vachaspati, Tanmay
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (20)
  • [9] Davis S. C., 2000, ARXIVHEPPH0010255V2
  • [10] Brane world linearized cosmic string gravity
    Davis, SC
    [J]. PHYSICS LETTERS B, 2001, 499 (1-2) : 179 - 186