A generalization of Cobham's theorem

被引:34
作者
Durand, F [1 ]
机构
[1] Inst Math Luminy, UPR 9016 CNRS, F-13288 Marseille 9, France
关键词
D O I
10.1007/s002240000084
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
If a nonperiodic sequence X is the image by a morphism of a fixed point of both a primitive substitution sigma and a primitive substitution tau, then the dominant eigenvalues of the matrices of sigma and tau are multiplicatively dependent. This is the way we propose to generalize Cobham's theorem.
引用
收藏
页码:169 / 185
页数:17
相关论文
共 21 条
[1]  
ALLOUCHE JP, 1992, LECT NOTES COMPUT SC, V583, P15
[2]  
BES A, 1996, EXTENSION COBHAMSEME
[3]  
Bruyere V., 1994, Bull. Belgian Math. Soc., V1, P577, DOI [doi:10.36045/bbms/1103408547, DOI 10.36045/BBMS/1103408547]
[4]  
CHRISTOL G, 1980, B SOC MATH FR, V108, P401
[5]  
Cobham A., 1972, MATH SYST THEORY, V6, P164, DOI 10.1007/BF01706087
[6]  
Cobham Alan, 1969, Math. Syst. Theory, V3, P186
[7]  
DURAND F, IN PRESS DISCRETE MA
[8]   A GENERALIZATION OF THE COBHAM THEOREM [J].
FABRE, S .
ACTA ARITHMETICA, 1994, 67 (03) :197-208
[9]   SUBSTITUTIONS AND BETA-NUMBERING SYSTEMS [J].
FABRE, S .
THEORETICAL COMPUTER SCIENCE, 1995, 137 (02) :219-236
[10]  
FABRE S, 1992, THESIS U AIX MARSEIL