Plasmonic Metamaterial Absorbers Design Based on XGBoost and LightGBM Algorithms

被引:4
作者
Gu, Leilei [1 ]
Xie, Shusheng [1 ]
Zhang, Ying [1 ]
Huang, Yule [1 ]
He, Yaojun [1 ]
Liu, Hongzhan [1 ]
Wei, Zhongchao [1 ]
Guo, Jianping [1 ]
机构
[1] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangdong Prov Key Lab Nanophoton Funct Mat & Dev, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Metamaterials; Inverse design; LightGBM; XGBoost; Reflection value; ABSOLUTE ERROR MAE; METALENS; RMSE;
D O I
10.1007/s11468-022-01697-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The emergence of metamaterials has brought a revolutionary way to manipulate the behavior of light on the nanoscale. However, there are still many problems in design process, such as time-consuming and many-to-one mapping. Here, we demonstrate the forward and inverse design of plasmonic metamaterial absorbers based on Light gradient boosting machine (LightGBM) and Extreme Gradient Boosting (XGBoost). The inverse framework can use the input reflection value to design the metamaterial parameter structure. The experimental results show that XGBoost has better performance in forward and inverse design (Forward-R-2: 0.956; Inverse-R-2: 0.967). The framework is suitable for designing metamaterials on demand, and it can be used in zoom imaging, metamaterial absorbers, metamaterial filters, and other fields.
引用
收藏
页码:2037 / 2047
页数:11
相关论文
共 50 条
[41]   Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films [J].
He, Sailing ;
Chen, Tuo .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2013, 3 (06) :757-763
[42]   Ultrathin metamaterial-based perfect absorbers for VHF and THz bands [J].
Khuyen, B. X. ;
Tung, B. S. ;
Yoo, Y. J. ;
Kim, Y. J. ;
Lam, V. D. ;
Yang, J. G. ;
Lee, Y. P. .
CURRENT APPLIED PHYSICS, 2016, 16 (09) :1009-1014
[43]   Design of broadband metamaterial near-perfect absorbers in visible region based on stacked metal-dielectric gratings [J].
Mao, Qianjun ;
Feng, Chunzao ;
Yang, Yizhi ;
Tan, Yingjie .
MATERIALS RESEARCH EXPRESS, 2018, 5 (06)
[44]   Efficient metamaterial-based plasmonic sensors for micromixing evaluation [J].
Chen, Chia-Yun ;
Chen, Chia-Yuan ;
Hsiao, Po-Hsuan ;
Hsu, Chun-Chieh ;
Mani, Karthick .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (03)
[45]   A review on plasmonic and metamaterial based biosensing platforms for virus detection [J].
Hassan, Mohammad Muntasir ;
Sium, Farhan Sadik ;
Islam, Fariba ;
Choudhury, Sajid Muhaimin .
SENSING AND BIO-SENSING RESEARCH, 2021, 33
[46]   The biosensing of liver cancer cells based on the terahertz plasmonic metamaterial [J].
Yang, Maosheng ;
Zhang, Zhang ;
Yan, Xin ;
Liang, Lanju ;
Wei, Dequan ;
Liu, Longhai ;
Ye, Yunxia ;
Ren, Yunpeng ;
Ren, Xundong ;
Yao, Jianquan .
INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES VI, 2019, 11196
[47]   Elimination of Unwanted Modes in Wavelength-Selective Uncooled Infrared Sensors with Plasmonic Metamaterial Absorbers using a Subtraction Operation [J].
Ogawa, Shinpei ;
Takagawa, Yousuke ;
Kimata, Masafumi .
MATERIALS, 2019, 12 (19)
[48]   Plasmonic electromagnetically-induced transparency in metamaterial based on second-order plasmonic resonance [J].
Jin, Xing-Ri ;
Lu, Yuehui ;
Zheng, Haiyu ;
Lee, YoungPak ;
Rhee, Joo Yull ;
Kim, Ki Won ;
Jang, Won Ho .
OPTICS COMMUNICATIONS, 2011, 284 (19) :4766-4768
[49]   Challenges and solutions in designing broadband metamaterial absorbers based on coplanar arrangement of resonators [J].
Cheng, Dengmu ;
Ma, Xin ;
Liu, Yuxiao ;
Qiu, Yi ;
Zhou, Yishan ;
Deng, Longjiang .
OPTICS AND LASER TECHNOLOGY, 2024, 169
[50]   Plasmon-Enhanced Infrared Spectroscopy Based on Metamaterial Absorbers with Dielectric Nanopedestals [J].
Hwang, Inyong ;
Yu, Jaeyeon ;
Lee, Jihye ;
Choi, Jun-Hyuk ;
Choi, Dae-Geun ;
Jeon, Sohee ;
Lee, Jongwon ;
Jung, Joo-Yun .
ACS PHOTONICS, 2018, 5 (09) :3492-3498